

Т.А. Найдина, В.М. Лебедева

# Цель:

улучшение качества методов оперативного прогнозирования урожайности озимых культур с помощью использования современных информационных технологий в производственной работе подразделений Росгидромета

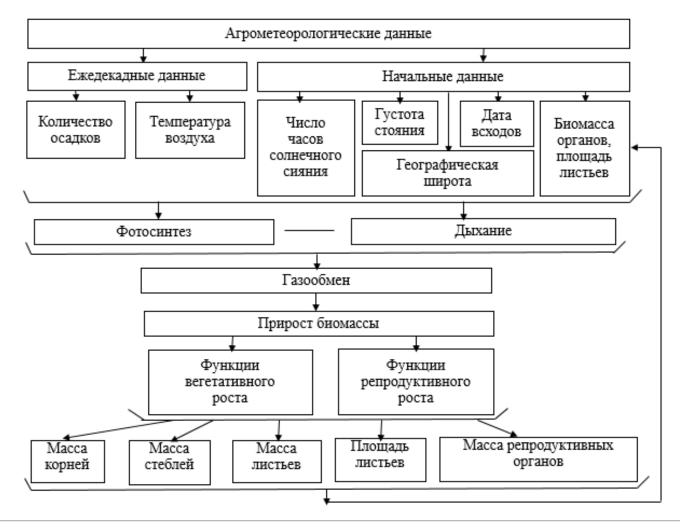
# Задача:

разработка подсистем оценки и прогноза урожайности озимой пшеницы и озимой ржи по субъектам РФ, федеральным округам и России в целом на основе усовершенствованной с учетом увлажнения в осенне-зимний период динамической модели «погода—урожай»

## Методология динамико-статистического прогнозирования

$$Y_t = f(t) + \varepsilon_t + C_t$$

$$Y_t = 0.01 \cdot Y_{t+1} \cdot E$$


$$E = \frac{m_p}{m} \cdot 100$$

Тренд — экстраполяция по одному временному ряду статистическими методами:

- простое скользящее среднее,
- взвешенное скользящее среднее,
- метод гармонических весов и др.

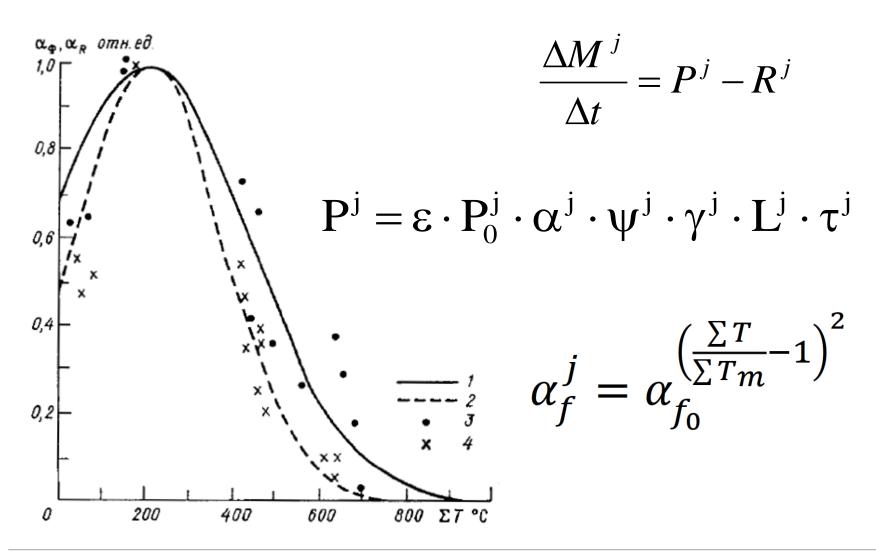
Оценка — динамическая модель биопродуктивности посевов

#### Схема прикладной динамической модели формирования урожая

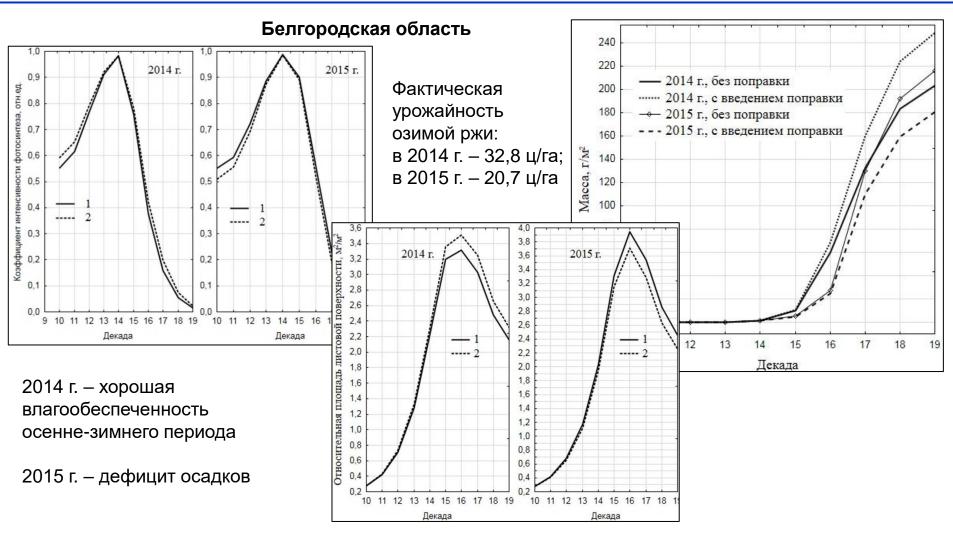


## Динамическая модель биопродуктивности озимых культур

$$\begin{aligned} m_i^{j+1} &= m_i^j + \left(\beta_i^j \frac{\Delta M^j}{\Delta t} - v_i^j m_i^j\right) n \\ m_p^{j+1} &= m_p^j + \left(\beta_p^j \frac{\Delta M^j}{\Delta t} + \sum_i^{l,s,r} v_i^j m_i^j\right) n \end{aligned} \right\}, i \in l,s,r.$$


$$M^{j} = m_{l}^{j} + m_{s}^{j} + m_{r}^{j} + m_{p}^{j}$$

#### Работа по усовершенствованию методов прогноза урожайности озимых культур


- 1) Замена исходных рядов урожайности с посевной площади на ряды урожайности с уборочной площади
- 2) Статистический анализ временных рядов урожайности и выбор трендовой составляющей динамико-статистического метода для каждого рассматриваемого субъекта РФ
- 3) Корректировка температурных и влажностных кривых динамической модели в соответствии с новыми данными о зависимости урожайности от погодных условий в последние годы
- 4) Определение нового значения биомассы репродуктивных органов при средних многолетних агрометеорологических условиях
- 5) Проведение исследований по учету условий осеннего, зимнего и ранневесеннего периодов развития с целью усовершенствования динамико-статистического метода прогноза урожайности [1, 4]
- 6) Проведение исследований по использованию спутниковых данных в динамической модели роста растений для составления оперативных прогнозов урожайности озимой ржи [2, 3]

### Работа по усовершенствованию методов прогноза урожайности озимых культур

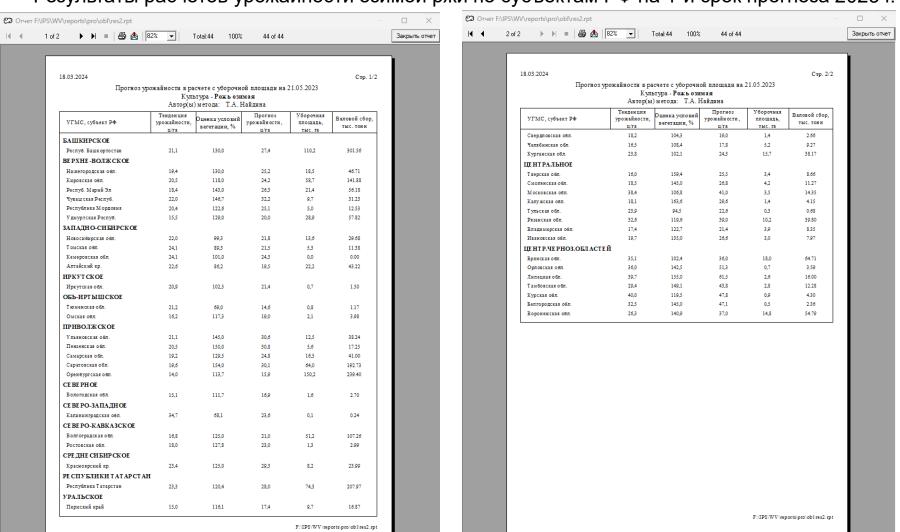
- 7) Разработка программных средств расчёта ожидаемой урожайности озимых культур для субъектов РФ [4, 5]
- [1] *Лебедева В.М., Береза О.В.* Результаты испытания автоматизированной технологии составления оценок условий вегетации и прогноза урожайности озимой пшеницы по субъектам Российской Федерации // Результаты испытаний новых и усовершенствованных технологий, моделей, методов гидрометеорологических прогнозов». 2021. Информационный сборник № 48. С. 103–114.
- [2] *Найдина Т. А.* Развитие динамико-статистического метода оперативного прогнозирования урожайности озимой ржи // Гидрометеорология и образование. 2020. № 4. С. 51–64.
- [3] *Найдина Т.А.* Использование спутниковых данных в динамической модели биопродуктивности озимой ржи на примере Калужской области // Материалы 20-й Международной конференции «Современные проблемы дистанционного зондирования Земли из космоса». Москва: ИКИ РАН, 2022. С. 321. DOI 10.21046/20DZZconf-2022a
- [4] *Лебедева В.М.*, *Найдина Т.А.* Учёт осенне-зимнего увлажнения почвы в динамико-статистической модели прогноза урожайности озимых культур. // Труды Гидрометцентра России «Гидрометеорологические исследования и прогнозы». 2022.- N = 4(386).- C. 79-95. DOI: https://doi.org/10.37162/2618-9631-2022-4-79-95
- [5] *Найдина Т.А., Лебедева В.М.* Применение математического моделирования продукционного процесса озимой ржи для прогноза урожая по субъектам РФ и России в целом // Материалы II Международной научно-практической конференции «Гидрометеорология и физика атмосферы: Современные достижения и тенденции развития», Санкт-Петербург, 20–22 марта 2024 г. в печати.



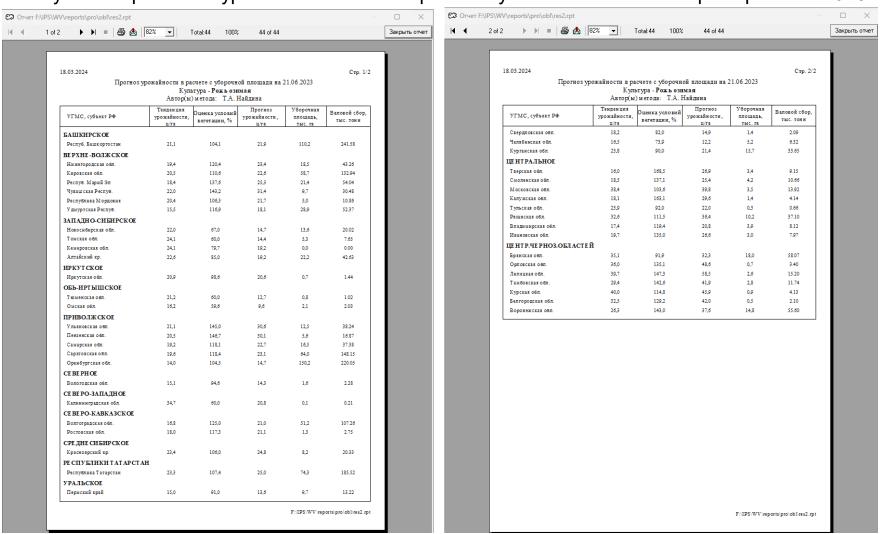
Научно-практический семинар-совещание специалистов территориальных учреждений Росгидромета Урало-Сибирского региона по использованию современных методов прогнозов и информационных технологий, г. Новосибирск, 14-16 мая 2024 г.



1 — при начальном значении интенсивности фотосинтеза  $\alpha_{f_0}$  = 0,55; 2 — с корректировкой  $\alpha_{f_0}$  в Белгородской области


Учёт увлажнения осенне-зимнего периода в расчётах ожидаемой урожайности озимой ржи в Белгородской области

|      | Урожайность, ц/га |                       |                     | Сумма осадков, % от нормы |           | Отклонение                           |                           |
|------|-------------------|-----------------------|---------------------|---------------------------|-----------|--------------------------------------|---------------------------|
| Год  | фак-<br>тиче-     | прогноз<br>без учета  | ируемая<br>с учетом | сентябрь-<br>ноябрь       | сентябрь- | суммы эффектив-<br>ных температур от | α <sub>f0</sub> ,<br>отн. |
|      | ская              | осенне-зимних осадков |                     | нолорь                    | март      | нормы, °С                            | ед.                       |
| 2001 | 21,9              | 22,9                  | 22,9                | 100,0                     | 100,5     | -86                                  | 0,55                      |
| 2002 | 25,3              | 17,2                  | 20,8                | 128,5                     | 120,4     | -56                                  | 0,59                      |
| 2003 | 19,1              | 14,6                  | 18,0                | 146,3                     | 104,1     | -74                                  | 0,59                      |
| 2004 | 22,6              | 19,6                  | 19,6                | 94,7                      | 133,4     | -185                                 | 0,55                      |
| 2005 | 21,3              | 25,9                  | 26,4                | 136,1                     | 131,8     | 22                                   | 0,59                      |
| 2006 | 19,2              | 23,3                  | 23,3                | 96,5                      | 122,9     | -75                                  | 0,55                      |
| 2007 | 18,2              | 15,9                  | 19,1                | 132,8                     | 110,1     | 21                                   | 0,59                      |
| 2008 | 23,5              | 21,0                  | 24,9                | 172,9                     | 125,1     | -42                                  | 0,59                      |
| 2009 | 19,7              | 21,8                  | 21,8                | 86,7                      | 107,3     | -69                                  | 0,55                      |
| 2010 | 12,6              | 14,1                  | 14,1                | 99,0                      | 123,2     | 76                                   | 0,55                      |
| 2011 | 21,6              | 18,9                  | 22,9                | 152,2                     | 127,6     | 43                                   | 0,59                      |
| 2012 | 19,2              | 21,7                  | 17,0                | 45,9                      | 82,9      | 210                                  | 0,51                      |
| 2013 | 25,8              | 21,4                  | 25,7                | 126,6                     | 127,8     | 177                                  | 0,59                      |
| 2014 | 32,8              | 20,7                  | 25,2                | 153,9                     | 106,2     | 75                                   | 0,59                      |
| 2015 | 20,7              | 24,3                  | 20,3                | 33,2                      | 73,0      | 15                                   | 0,51                      |
|      |                   |                       | Авт                 | орские испытани           | я         |                                      |                           |
| 2016 | 35,0              | 31,6                  | 31,6                | 89,2                      | 125,8     | 3                                    | 0,55                      |
| 2017 | 37,1              | 33,4                  | 33,4                | 108,6                     | 104,6     | -118                                 | 0,55                      |
| 2018 | 37,5              | 32,7                  | 34,1                | 124,3                     | 153,2     | 68                                   | 0,59                      |
| 2019 | 28,1              | 34,7                  | 29,9                | 55,4                      | 90,6      | 135                                  | 0,51                      |
| 2020 | 32,1              | 30,2                  | 30,2                | 88,5                      | 95,8      | -63                                  | 0,55                      |
| 2021 | 28,6              | 32,7                  | 32,7                | 66,2                      | 95,8      | -54                                  | 0,55                      |
| 2022 | 36,2              | 38,0                  | 38,0                | 63,7                      | 93,8      | -42                                  | 0,55                      |
| 2023 | 47,1              | 39,4                  | 42,0                | 177,5                     | 158,1     | -34                                  | 0,59                      |


Если сумма осадков в осенний период на 20 % выше нормы, и за весь осенне-зимний период сумма осадков выше нормы, то значение начальной интенсивности фотосинтеза на начало вегетации увеличить на 7 % (до 0,59).

Если сумма осадков осеннего периода на 60 % ниже нормы, и за период с сентября по март она не превысила 95 %, а отклонение суммы эффективных температур от нормы за весеннелетний период вегетации было положительным, то понизить значение начальной интенсивности фотосинтеза на начало вегетации на 7 % (до 0,51).

Результаты расчетов урожайности озимой ржи по субъектам РФ на 1-й срок прогноза 2023 г.



Результаты расчетов урожайности озимой ржи по субъектам РФ на 2-й срок прогноза 2023 г.



# Заключение о качестве метода (по РД 52.27.284—91) на материалах независимой выборки



Оправдываемость метода

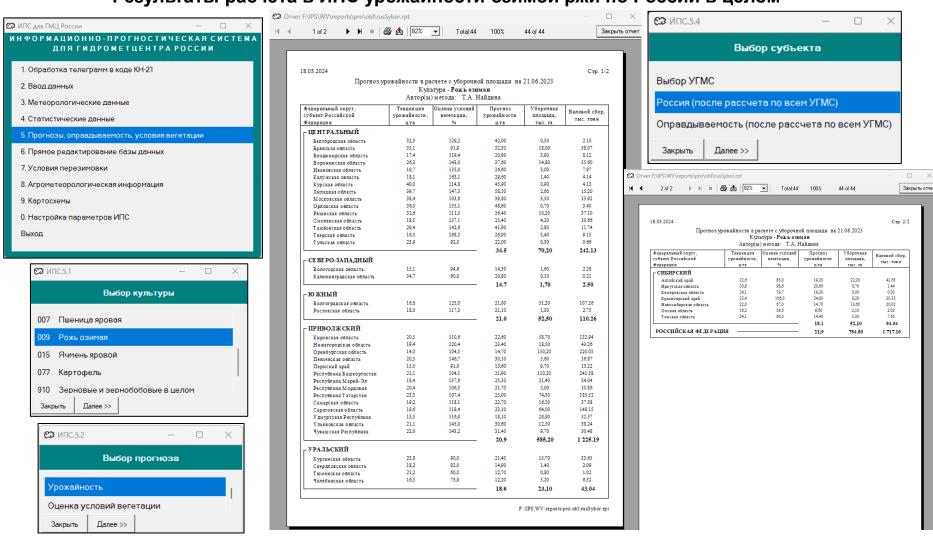
$$\rho = \frac{n_+}{N} \cdot 100$$

 ${\bf n}_{+}$  – число оправдавшихся прогнозов,

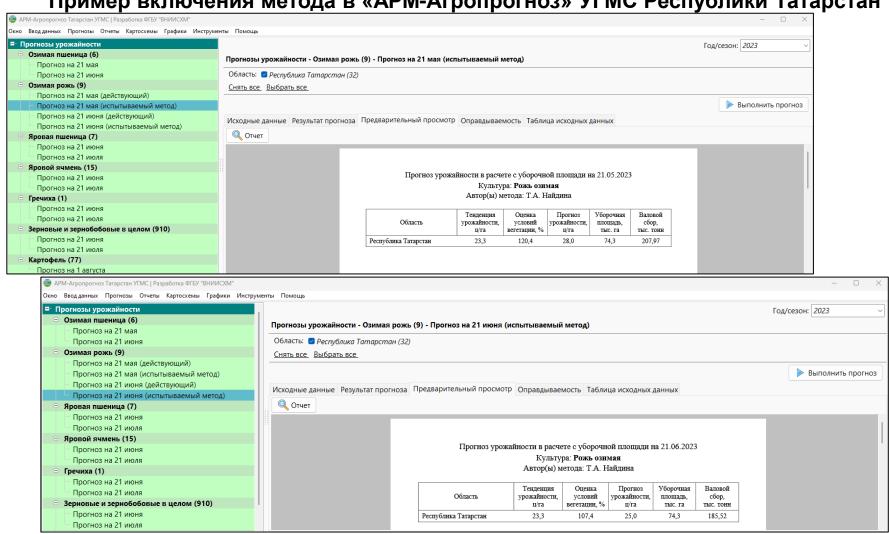
 ${
m N}_{-}$  – общее число прогнозов.

Ошибка метода

$$D = \frac{\sum_{i=1}^{n_+} d_i}{n_+}$$


## Результаты авторской проверки за 2019 – 2023 гг.

- ✓ При составлении прогноза с заблаговременностью более 2, но менее 4 месяцев среднее значение оправдываемости испытываемого метода составило 86,4 %, среднее значение ошибки испытываемого метода 8,7 %
- ✓ При составлении прогноза с заблаговременностью 1–2 месяца среднее значение оправдываемости испытываемого метода составило 93,2 %, среднее значение ошибки испытываемого метода – 7,4 %


## Результаты расчетов валового сбора зерна озимой ржи по России в целом

|         | Валовой     | сбор, тыся | Оправдываемость |                               |         |
|---------|-------------|------------|-----------------|-------------------------------|---------|
| Год     | фактическое | про        | ргноз           | по относительной<br>ошибке, % |         |
|         | значение    | 21 мая     | 21 июня         | 21 мая                        | 21 июня |
| 2019    | 1426,75     | 1676,69    | 1461,30         | 82,5                          | 87,2    |
| 2020    | 2374,75     | 2321,41    | 2234,70         | 97,8                          | 96,3    |
| 2021    | 1716,82     | 1985,65    | 1842,38         | 84,3                          | 92,8    |
| 2022    | 2176,83     | 2177,61    | 2178,49         | 99,9                          | 99,9    |
| 2023    | 1709,14     | 1957,14    | 1736,17         | 85,5                          | 98,4    |
| Среднее |             |            |                 | 91,1                          | 94,1    |

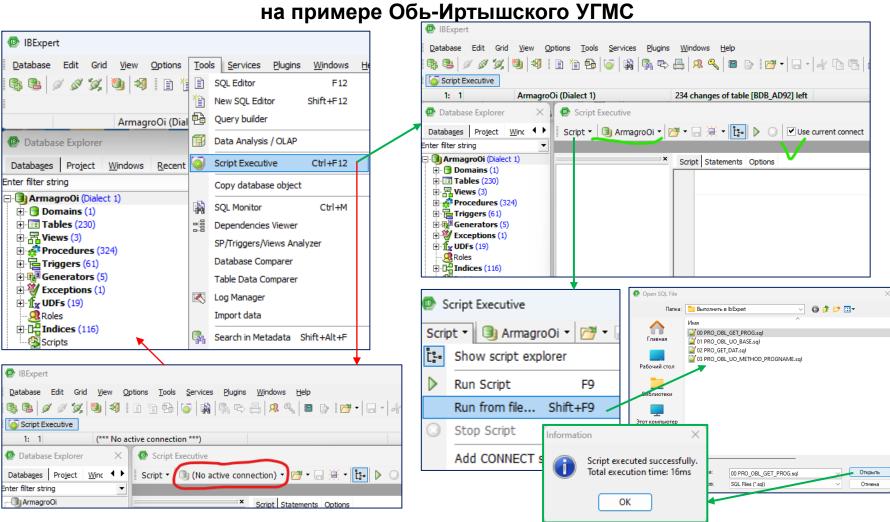
Результаты расчёта в ИПС урожайности озимой ржи по России в целом



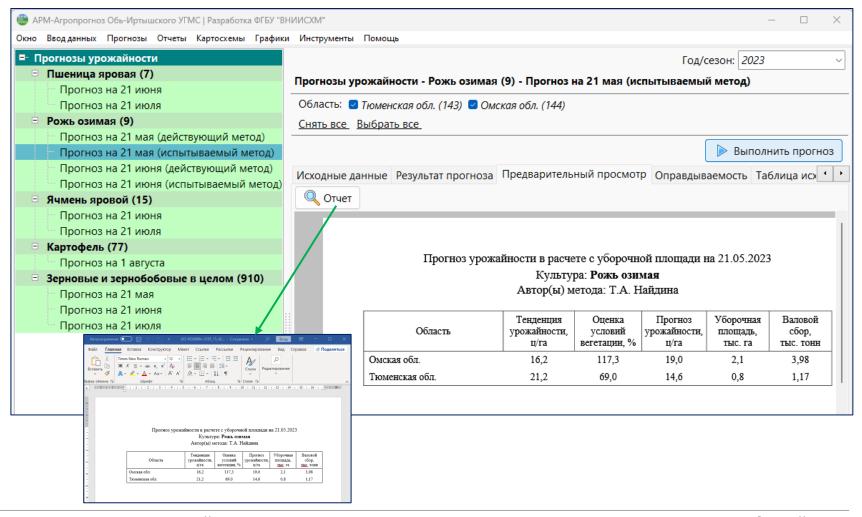
Пример включения метода в «АРМ-Агропрогноз» УГМС Республики Татарстан



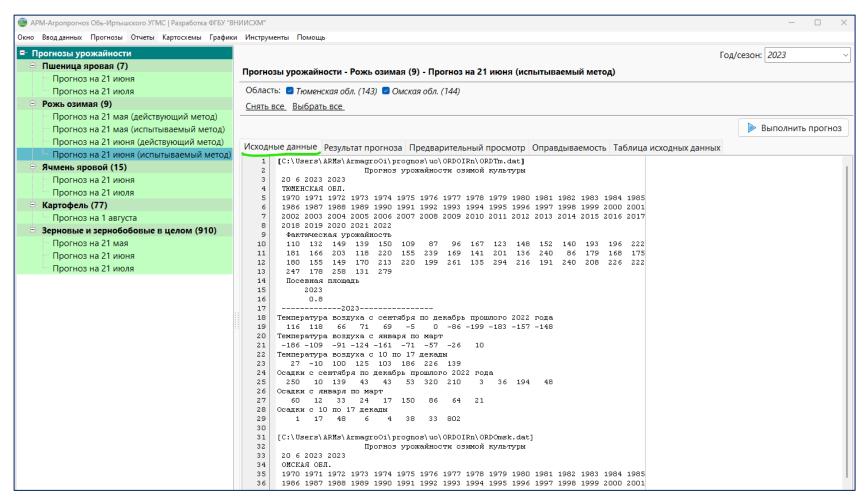
#### Включение метода в «АРМ-Агропрогноз» на примере Обь-Иртышского УГМС


Для испытания усовершенствованного метода прогноза урожайности:

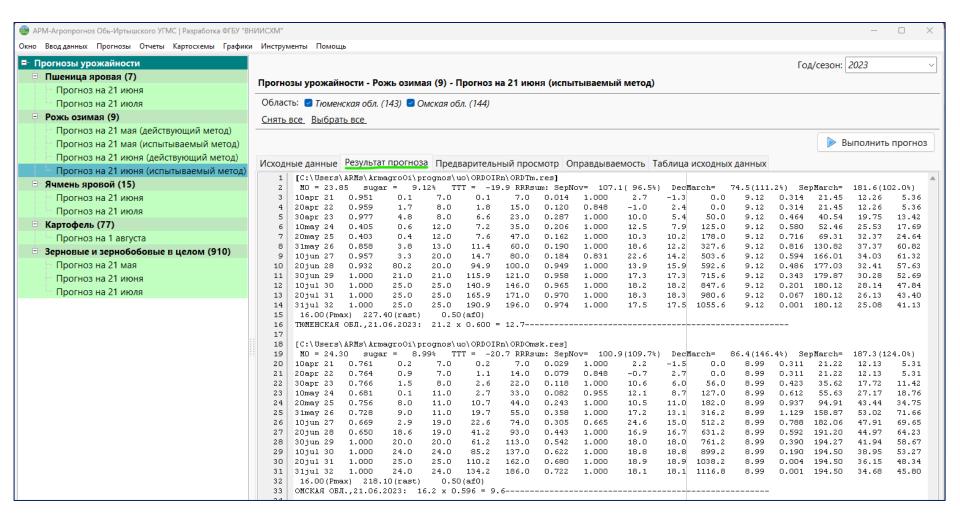
- 1) заменить файл "\ArmagroOi\res\pro\prognos5.xml"
- 2) скопировать файлы: «009n-pr2.ini», «009n-pr1.ini» в папку «\ArmagroOi\res\pro\uo»
- 3) скопировать папку «ORDOIRn» в папку «\ArmagroOi\prognos\UO»


| Имя                    | Дата изменения   | Тип             |
|------------------------|------------------|-----------------|
| ☑ ! Инструкция.txt     | 03.05.2024 10:27 | Файл "ТХТ"      |
| 🔐 009n-pr2.ini         | 03.05.2024 10:12 | Файл "INI"      |
|                        | 03.05.2024 10:09 | Файл "INI"      |
| prognos5.xml           | 26.04.2024 9:45  | Файл "ХМL"      |
| ORDOIRn                | 03.05.2024 10:26 | Папка с файлами |
| 🛅 Выполнить в lbExpert | 27.04.2024 16:10 | Папка с файлами |
|                        |                  |                 |

- 4) Выполнить скрипты из папки «Выполнить в IbExpert» в программе IbExpert:
  - "00 PRO\_OBL\_GET\_PROG.sql"
  - "01 PRO OBL UO BASE.sql"
  - "02 PRO\_GET\_DAT.sql"
  - "03 PRO\_OBL\_UO\_METHOD\_PROGNAME.sql«
- 4) выбрать «Прогнозы»–«Прогнозы урожайности»–«Озимая рожь»→Выполнить прогноз


Выполнение скриптов из папки «Выполнить в IbExpert» в программе IbExpert:




#### Включение метода в «АРМ-Агропрогноз» на примере Обь-Иртышского УГМС



#### Включение метода в «АРМ-Агропрогноз» на примере Обь-Иртышского УГМС



#### Включение метода в «АРМ-Агропрогноз» на примере Обь-Иртышского УГМС



# Результаты

- Решением ЦМКП от 18 сентября 2020 г. усовершенствованный метод прогноза урожайности озимой пшеницы рекомендован к практическому использованию в качестве основного метода в ФГБУ «Гидрометцентр России» и подразделениях Росгидромета [1].
- Разработанная в ФГБУ «ВНИИСХМ» подсистема оценки и прогноза урожайности и валового сбора озимой ржи по субъектам РФ с включённой в неё схемой расчёта прогноза урожайности озимой ржи по территории ФО и России в целом на основе прогноза урожайности по субъектам РФ [4, 5] в 2024 г. установлена в ИПС ФГБУ «Гидрометцентр России» для проведения производственных испытаний.
- В 2025–2026 гг. планируется проведение производственных испытаний и внедрение усовершенствованных методик прогноза урожайности озимой ржи в ЦГМС и УГМС в автоматизированной системе «АРМ-Агропрогноз».