Министерство природных ресурсов и экологии

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «СИБИРСКИЙ РЕГИОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ» (ГУ «СибНИГМИ»)

ЗАПАДНО-СИБИРСКОЕ МЕЖРЕГИОНАЛЬНОЕ ТЕРРИТОРИАЛЬНОЕ УПРАВЛЕНИЕ ФЕДЕРАЛЬНОЙ СЛУЖБЫ ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ (Западно-Сибирское УГМС)

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ХАНТЫ-МАНСИЙСКИЙ ЦЕНТР по ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ» (ГУ «Ханты-Мансийский ЦГМС»)

УДК 551.509.1/5 № госрегистрации 01200964812 Инв. №

СОГЛАСОВАНО

Руководитель ЗС УГМС

ПФ Севостьянов

УТВЕРЖДАЮ

Директор ГУ «СибНИГМИ»

д-р физ-мат. наук В.Н.Крупчатников

2009г.

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

по тематике региональных исследований

«Разработать метод и технологию расчета среднесрочного прогноза температуры воздуха, осадков и индекса пожароопасности по районам Ханты-Мансийского автономного округа — Югра и административным районам Алтайского края, Томской и Кемеровской областей» (Тема 8.73)

Научный руководитель темы зав. ЛАСПГ ОИиНИТ СибНИГМИ, канд. геогр. наук

М.Я. Здерева

Новосибирск 2009

СПИСОК ИСПОЛНИТЕЛЕЙ

Зав. лабораторией канд. геогр. Наук (СибНИГМИ)

Зав. Отделом ИиНИТ (СибНИГМИ)

Научный сотрудник (СибНИГМИ)

Ведущий инженер-программист (СибНИГМИ)

Нач. отдела (ЗСУГМС)

Главный синоптик (ЗСУГМС)

Нач.отдела *зам*. (ЗСУГМС)

Зам. нач. отдела (ЗСУГМС)

Ведущий инженер-программист (ЗСУГМС)

28.12.03

В.М. Токарев научное руководство, разработка алгоритмов

М.Я. Здерева

28 12.09

Н.А. Хлучина участие в разработке алгоритмов, написание программ, оформление отчета

научное руководство, постановка задач,

разработка алгоритмов и технологий, написание программ, написание отчета

Lon 25, 12.03

М.С. Котов разработка и отладка ПО выборки данных из SQL-базы, программы форматирования рабочих файлов, настройка технологической линии расчета прогнозов

ell. R-

М.В. Виноградова постановка задач, проведение испытаний, написание отчета

A. paeceof

А.М. Лапчик проведение испытаний, анализ оценок прогнозов

24.12.092

В.А. Грешникова настройка технологической линии расчета , написание программ-скриптов

JAN 45 25.02.09

А.А. Жилин подготовка архивных данных, написание программ формирования выборок

Ulyon es

Г.А. Шустова подготовка ПО оперативной технологии расчетов прогнозов

Ведущий инженер-программист (ЗСУГМС)

29.12.2009

В.К. Маев разработка алгоритмов контроля и восстановления данных, их ПО

Нач. отдела (ЗСУГМС)

Topys 24.12,2009

Брусенко Е.А. Анализ климатических параметров, раздел 3.1 отчета

Ведущий инженер-программист (ЗСУГМС)

M.11 2009

М.Ю. Садовников поддержка сетевых серверов

Ведущий инженер-программист (ЗСУГМС)

May 24.12,2003

А.В. Мариненко разработка программ оценок прогнозов, сравнительных характеристик оценок разных методов

Нач.отдела (Ханты-Мансийский ЦГМС)

28.12.09

О.Б. Перелыгина подготовка архивных данных, анализ оценок испытания метода

Нормоконтролер

28 12,2009

Т.П.Панькова

РЕФЕРАТ

Отчет 88 с., 6 ч., 17 рис., 9 табл., 37 источников, 3 прил.

СТЕПЕНЬ ПОЖАРООПАСНОСТИ В ЛЕСАХ, СРЕДНЕСРОЧНЫЙ ПРОГНОЗ, ФИЗИКО-СТАТИСТИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ, МГУА, DW-АЛГОРИТМ

Разработаны алгоритмы расчета автоматизированных среднесрочных прогнозов температуры воздуха, осадков и показателей пожароопасности в лесах с детализацией по пунктам территории. Использован физико-статистический подход к интерпретации гидродинамических прогнозов полей атмосферы. Для получения решающих уравнений применен алгоритм многорядной селекции с комбинаторным перебором частных описаний (МГУА). Использован алгоритм DW для кластеризации рабочей выборки. Проведены авторские испытания разработанного метода, подтверждающие его преимущество по сравнению с действующими в Западно-Сибирском регионе. Технология расчета полностью автоматизирована: от ввода и контроля базовой информации до разных вариантов распространения результатов, включая инет- и интернет реализации.

СОДЕРЖАНИЕ

введение	7
1 Базовые выборки предиктантов и предикторов	., 9
1.1 Архивы метеополей в коде GRIB	, 9
1.2 Архивы фактической метеоинформации, контроль и восстановление данных	12
1.2.1 Восстановление данных по температуре (срочной, минимальной,	
максимальной, среднесуточной)	13
1.2.2 Восстановление данных по температуре точки росы	15
1.2.3 Восстановление данных по осадкам	17
2 Основные методические алгоритмы в физико-статистической схеме прогноза	19
2.1 Состояние проблемы	19
2.2 Метод группового учета аргументов	21
2.3 Кластеризация обучающих выборок	23
3 Разработка метода прогноза экстремальной температуры воздуха	25
3.1 Оценка архивной выборки температуры относительно климатических	
параметров	25
3.1.1 Аномалия средних месячных температур воздуха	25
3.1.2 Характеристика междусуточной изменчивости температуры воздуха в	В
разные периоды года	31
3.2 Информативность потенциальных предикторов	40
3.3 Метод прогноза экстремальной температуры воздуха	43
4 Разработка методов прогноза показателей влажности	44
4.1 Метод прогноза осадков	44
4.2 Метод прогноза дефицита влаги в атмосфере	47
5 Технология расчета показателя пожароопасности в лесах по метеорологическим	
условиям	49
6 Результаты авторских испытаний методических прогнозов	53
ЗАКЛЮЧЕНИЕ	60
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	62
ПРИЛОЖЕНИЕ А	65
ПРИЛОЖЕНИЕ В	73
ПРИЛОЖЕНИЕ С	80

ВВЕДЕНИЕ

Несмотря на то, что к настоящему времени существуют прогностические разработки для прогноза отдельных опасных и неблагоприятных явлений погоды для разных регионов России, задача повышения их качества и увеличения заблаговременности предсказания остается актуальной. Данное исследование направлено на повышение эффективности предупреждения высокой пожароопасности в лесах Сибири за счет повышения пространственной детализации и полной автоматизации выпускаемых прогнозов.

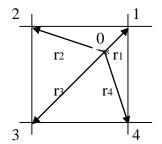
Погодные условия устойчиво являются одним из самых важных факторов вероятности возгорания, распространения и динамики лесных пожаров. Зная ожидаемую погоду, можно оценить и динамику пожароопасности в лесах через определенные критерии.

Разработкой критериев, отражающих вероятность возникновения пожаров, человечество занимается более 80 лет разными подходами и направлениями вплоть до многофакторного моделирования. Однако создать показатель, идеально соответствующий фактическому состоянию и полностью удовлетворяющий потребителей, не удается, вопервых, по причине многообразия условий, присущих возникновению огненной стихии, и сочетаний различных факторов, включая антропогенный, во-вторых, из-за недостатка и большой дискретности начальных данных наблюдений различных природных параметров. Большие возможности для решения последней проблемы заложены в привлечении данных спутникового зондирования атмосферы и отражения подстилающей поверхности в разных режимах. Исследования в этой области в настоящее время интенсивно ведутся за рубежом и в отдельных центрах приема спутниковой информации России (Красноярск).

В настоящее время расчет степени пожарной опасности и перевод ее в классы прописан в ГОСТе Р 22.1.09-99 и в"Методических указаниях по прогнозированию пожарной опасности в лесах по условиям погоды" Гидрометслужбы (1975 г.). Расчеты базируются на показателе В.Г.Нестерова, который отражает накопление "сухости" при наблюденных температурах воздуха. Эта формула выведена им еще в сороковые годы прошлого столетия, и, благодаря своей простоте, является оперативной до сих пор. Однако современные компьютеры позволяют алгоритмизировать и эффективно учитывать известные более точные связи температуры и влаги в атмосфере. Исследованию возможности базировать показатель пожарной опасности на расчете накопленного

дефицита упругости насыщения была посвящена часть предыдущей разработки прогностического метода для Новосибирской области.

Прогностические подразделения гидрометслужбы обязаны составлять и отправлять в лесоохранные органы прогнозы классов пожарной опасности на трое суток и месяц. Однако, технология составления прогнозов, предложенная в указанных "Методических указаниях по прогнозированию пожарной опасности...", давно устарела, является неэффективной. В итоге дежурные синоптики оценивают главным образом тенденцию степени пожарной опасности, исходя из анализа ожидаемой синоптической ситуации и своего опыта. Понятно, что такой прогноз можно назвать лишь фоновым для большой территории. Современная технология выпуска прогноза погоды предъявляет требования максимальной автоматизации и объективизации прогностического процесса. Первый автоматизированного создания полностью детализированного среднесрочного прогноза показателя пожароопасности произведен в разработке СибНИГМИ 2007 года для районов Новосибирской области. Целью данного исследования является создание подобной схемы для остальной территории зоны ответственности Западно-Сибирского УГМС и районов Ханты-Мансийского округа. Поскольку показатель пожароопасности базируется В лесах основных метеорологических элементах, то первый этап работы включает разработку прогностических алгоритмов для температуры воздуха и осадков с детализацией по метеостанциям рассматриваемой территории.


Одним из наиболее качественных в настоящее время способов объективного прогноза элементов и явлений локальной погоды на средние сроки является физикостатистические разработки на базе прогностической продукции гидродинамических моделей атмосферы (ГДМА). С конца прошлого века в мировых центрах погоды интенсифицируются работы по гидродинамическому моделированию атмосферы. Усилия ученых направлены как на повышение качества прогностической продукции, так и на расширение списка выходных элементов параллельно с увеличением пространственного и временного разрешения. В результате этих работ в международной сети обмена метеорологической информацией появляются новые виды выходной продукции гидродинамических моделей из ведущих центров погоды. Уменьшение модельного шага по пространству дает возможность для увеличения пространственной детализации и в физико-статистических схемах.

1 БАЗОВЫЕ ВЫБОРКИ ПРЕДИКТАНТОВ И ПРЕДИКТОРОВ

1.1 Архивы метеополей в коде GRIB

Методы, статистической обработке данных, требуют основанные на количественно значимые и физически обоснованные архивные выборки как исследуемых величин-предиктантов, так и параметров-предсказателей. Предварительно выбирается будущая концепция интерпретации модельных прогнозов: PP (perfect prognose) или MOS (model output statistic). В первом случае уравнения или логические связи предиктанта и предикторов определяются на фактических данных, во втором – на модельных прогностических полях. В нашем исследовании применен модифицированный вариант: базовой информацией для параметров-предикторов служат поля объективного анализа гидродинамических схем. Таким образом, это еще не прогноз, но к исходным данным применены алгоритмы инициализации конкретной схемы, и данные уже определены в аналогичных узлах регулярной сетки.

Для накопления архивов использованы модельные выпуски схем ЕСМГ (Рединг) и UKMO (Эксетер). Первая является наиболее надежной по оценкам ожидаемых синоптических процессов и значений в метеополях, вторая — имеет более широкий список выходных элементов. Модельные данные представлены в узлах географической сетки $2,5^0*2,5^0$. Для исследуемой территории Западной Сибири произведена вырезка из секторов S и T для северного полушария от $47,5^0$ до $110,0^0$ по широте и от $82,5^0$ до $35,0^0$ по меридиану. Пространственный сектор рассматриваемых данных для каждой станции региона составляет по 5 узлов (примерно по 1300 км в средних широтах) в каждую сторону света от центрального узла, определенного по минимальному расстоянию до станции в соответствии с рисунком 1.

$$\mathbf{r} = \mathbf{r} \mathbf{i} \mathbf{r} (\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4), \tag{1}$$

где r_i - расстояния между станцией и узлами сетки; точкой 0 обозначена станция; точками 1, 2, 3, 4 обозначены узлы сетки.

Рисунок 1

Расстояние между двумя точками $P_1 \varphi_1, \theta_1$ и $P_2 \varphi_2, \theta_2$ определяется по формуле

где: ρ - радиус Земли, φ_i - долгота, θ_i - широта.

Как показывает практика, такой выбор территории позволяет с запасом учесть вариации расчетов показателей ожидаемых процессов синоптического масштаба. В качестве исходных параметров-предсказателей используются как непосредственно модельные данные метеоэлементов, так и их расчетные производные: лапласианы, градиенты, тенденции (таблица 1).

Таблица 1 – Исходные параметры-предсказатели

Номер параметра		Обозначен ие	Параметр (единицы измерения)
срок 00	срок 12	параметра	
1	18	H500	геопотенциал на уровне АТ500 (Дам)
2	19	H700	геопотенциал на уровне АТ700 (Дам)
3	20	H850	геопотенциал на уровне АТ850 (Дам)
4	21	P89	давление на уровне моря (гПа)
5	22	R700	влажность воздуха на уровне АТ700 (%)
6	23	T700	температура воздуха на уровне АТ700 (°C)
7	24	T850	температура воздуха на уровне AT850 (°C)
8	25	T98	температура воздуха на уровне станции (°C)
9	26	LH500	лапласиан геопотенциала на уровне АТ500 (Дам/100км)
10	27	GH500	градиент геопотенциала на уровне АТ500 (Дам/100км)
11	28	TH500	суточное изменение геопотенциала на уровне АТ500 (Дам)
12	29	LP89	лапласиан давления на уровне моря (гПа/100км)
13	30	GP89	градиент давления на уровне моря (гПа/100км)
14	31	TP89	суточное изменение давления на уровне моря (гПа)
15	32	LT850	лапласиан температуры воздуха на уровне AT850 (°C/100км)
16	33	GT850	градиент температуры воздуха на уровне AT850 (°C/100км)
17	34	TT850	суточное изменение температуры воздуха на уровне AT850 (°C)

На рисунке 2 показаны два участка прямоугольной сетки, часть точек которой пронумерована. Для точки 0, являющейся началом координат, вычисляются лапласиан и градиент метеопараметра. Перемещая начало координат из точки 0 в любую точку сетки

и принимая эту точку за новое начало координат, можно вычислить значения лапласиана и градиента для всех узлов сетки.

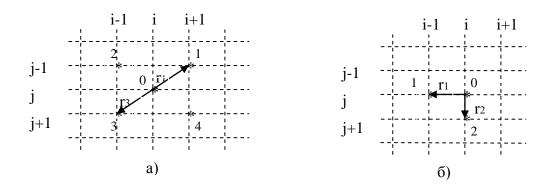


Рисунок 2

Рассмотрим поле некоторой метеорологической величины H(x, y). Лапласиан ΔH рассчитывается по формуле:

Применяя упрощенные формулы для вычисления производных в точке, приведем формулу к следующему виду:

где: k=10 – коэффициент форматирования, r_1 - расстояние между точками 0 и 1, r_3 - расстояние между точками 0 и 3 на рисунке 2.a.

Градиент ∇H рассчитывается по формуле:

Или, в параметрическом виде:

где: k — коэффициент форматирования, r_1 - расстояние между точками 0 и 1, r_2 - расстояние между точками 0 и 2 на рисунке 2.б.

Максимальная заблаговременность модельных прогнозов, поступающих в Новосибирский центр, составляет 168 часов для ЕСМF и 120 часов для UKMO. Таким образом, при расчете прогнозов на пятые сутки в оперативном режиме исходный набор предикторов ограничен продукцией модели ЕСМF.

Временной период архивов включает ежедневные данные по срокам 00 и 12 ВСВ за 2002-2008 годы и разбит на периоды, обоснованные климатическими синоптическими процессами в Западно-Сибирском регионе: холодный - с ноября по март включительно; теплый – с июня по август; переходный – апрель, май, сентябрь, октябрь.

1.2 Архивы фактической метеоинформации, контроль и восстановление данных

Синхронно с параметрами модельных данных выбраны фактические значения метеоэлементов на станциях региона. Предиктантами в данной разработке являются минимальная и максимальная температура воздуха, осадки, дефицит точки росы и пересчитанный дефицит упругости насыщения воздуха. Их значения за указанный архивный период получены непосредственно из метеорологических телеграмм, а потому содержат ошибки и пропуски. Ежедневные исходные данные со станций, используемые в схеме расчета прогноза (за сроки 00 и 12 ВСВ), читаются либо из базы ГИС МЕТЕО, либо из SQL-базы СибНИГМИ, и также имеют ошибки первоисточника. Поэтому разработанные алгоритмы контроля и восстановления основных погодных величин применимы как к исторической, так и к текущей информации.

Для анализа рабочего материала выбраны данные по 374 станциям, из них данные по 55 станциям рассматриваются как дополнительные (таблица А.1). Дополнительные станции расположены по периметру рассматриваемой территории, в таблице А.1 они помечены знаком '#'. Для них восстановление отсутствующих и забракованных данных не производится, но их прошедшие контроль значения привлекаются в процедуре восстановления информации сплайном по пространству.

1.2.1 Восстановление данных по температуре (срочной, минимальной, максимальной, среднесуточной)

При восстановлении срочных данных используется следующий набор алгоритмов:

- линейная интерполяция по 2-м срокам, но не более 2-х сроков слева и справа;
- сплайн по срокам (временной сплайн по 3-м срокам слева и справа, но не менее 3-х сроков всего);
- сплайн по пространству (по окружающим станциям, алгоритм Василенко).

Восстановление проводится либо по всем станциям с данными, либо по восьми ближайшим станциям (регулируется параметром ITI= 0/1).

Для восстановления данных сплайном по пространству привлекаются дополнительные станции по периметру территории, на которых восстановление по окружающим станциям не проводится.

'TTууmmdd.txt' - имя входного/выходного файла температуры, содержит символы даты наблюдении: уу –год, mm – месяц, dd – день.

Входные файлы содержат следующие данные:

- Т температура по срокам (передается по восьми срокам ВСВ),
- Ттах максимальная температура (определяется за 12 предыдущих часов),
- Ттіп минимальная температура (определяется за 12 предыдущих часов),
- Т24 среднесуточная температура (определяется за 24 часа метеосуток).

Tmax и T24 передаются в последний дневной срок по BCB, Tmin передается в последний ночной срок текущих метеосуток по BCB.

Tmin, Tmax - данные контролируются и восстанавливаются по срочным данным (критерий: не МЕНЬШЕ и не БОЛЬШЕ);

T24 - среднесуточные данные контролируются и восстанавливаются по срочным данным (8 сроков в сутках).

Краткий алгоритм схемы восстановления данных температуры:

1. Ввод исходных данных из файла за очередной день месяца и конкретный срок поступления данных (00 или 12 ВСВ).

Данные температуры за предшествующий день месяца тоже считываются и используются при восстановлении.

2. Грубый контроль достоверности данных и оценка полноты их наличия

Подозрительными полагаются данные по модулю больше 50 градусов Цельсия, при этом данные, которые по модулю больше 70 градусов Цельсия отбраковываются.

После проведения грубого контроля, данные используются как исходные данные для восстановления.

3. Контроль данных по знаку и величине

Значение температуры анализируется по величине скачка между сроками слева и справа (предел составляет 10°С для трехчасовых сроков). Контроль проводится как для срочных данных, так и для минимальной, максимальной и среднесуточной температур. При этом сохраняются значения срочных температур, близкие с допуском в 3 градуса к минимальной или максимальной температурам.

При контроле минимальной и максимальной температур по срочным данным используется сравнение отдельно для дневных и ночных значений, а также дневных и ночных сумм значений. Если все, за исключением только одного из них (ночные, дневные) срочные данные текущих метеорологических суток удовлетворяют по критерию не МЕНЬШЕ и не БОЛЬШЕ (Tmin, Tmax соответственно) для данных суток, и есть хотя бы одно удовлетворяющее им по допуску в 3 градуса, то данный экстремум считается верным. При этом срочное значение, не удовлетворяющее экстремуму, обрезается по значению экстремума. В противном случае экстремум определяется из срочных данных, при их наличии за все 8 сроков.

Контроль среднесуточных температур проводится на данном этапе только по знаку, а их восстановление при отсутствии значения осуществляется по срочным данным за 8 сроков в конце процедуры восстановления данных.

4. Восстановление срочных данных интерполяцией по срокам.

Временной сплайн применяется при наличии в сумме слева и справа от восстанавливаемого срока не менее трех сроков с заданными значениями температуры и обязательным наличием данных на обеих временных границах. Используются для выборки значений по 3 срока слева и справа. Чтобы восстановить больше сроков процедура повторяется дважды. Применяется процедура интерполяции значений кубическими сплайнами. На границах задается условие равенства нулю вторых производных.

При наличии заданных значений только по 2-м срокам (только на границах) используется линейная интерполяция, при этом временной интервал слева и справа может быть не более 6-ти часов.

5. Восстановление срочных данных интерполяцией по окружающим станциям..

Все забракованные значения, которые не удалось восстановить описанными выше процедурами, восстанавливаются сплайном по пространству (по окружающим станциям), используя алгоритм Василенко [1].

Восстановление может проводиться либо по всем станциям с данными, либо по восьми ближайшим. Значения на горных станциях при этом не используются.

После выполнения восстановления данных по окружающим станциям вновь проводятся взаимные контроли и согласования срочных, минимальных и максимальных температур выше изложенными процедурами, а также расчет отсутствующих среднесуточных температур по срочным данным за 8 сроков. Если восстановленные сплайном по пространству значения не удовлетворяют экстремальным величинам (Tmin, Tmax), которые до этого этапа были признаны верными, то последние восстановленные значения усекаются до значений экстремальных величин.

6. Дополнительный контроль и запись результатов

В процессе восстановления осуществляется контроль за наличием в срочных данных скачков значений величин между сроками больше 10 и 20 градусов Цельсия, анализируются сроки, для которых не удалось восстановить значения.

Результат восстановления записывается в файл 'TTyymmdd.txt' в директорию для соответствующего срока анализа (00 или 12 BCB).

Перезапись данных за предшествующий день месяца, даже, если они участвовали в восстановлении данных и возможно сами претерпели изменения, не производится.

1.2.2 Восстановление данных по температуре точки росы

Исходные данные получены из телеграмм со станций за сроки 00 и 12 BCB. Читаются либо из базы ГИС МЕТЕО, либо из SQL-базы СибНИГМИ.

Срочные данные передаются по 8-ми срокам наблюдений.

Контролируются по соответствующим срочным данным температуры воздуха (критерий: НЕ БОЛЬШЕ).

При восстановлении используются следующие подхоы:

- линейная интерполяция по 2-м срокам, но не более 2-х сроков слева и справа;
- сплайн по срокам (временной сплайн по трем срокам слева и справа, но не менее трех сроков всего);
- сплайн по пространству (по окружающим станциям, алгоритм Василенко [1]).

Восстановление проводится либо по всем станциям с данными, либо по восьми ближайшим станциям (регулирующий параметр ITI= 0/1).

Краткий алгоритм схемы восстановления данных:

1. *Ввод* исходных данных из файла за очередной день месяца и конкретный срок выборки данных из базы.

Данные температуры точки росы за предшествующий день тоже считываются и используются при восстановлении.

2. При считывании проводится грубый контроль достоверности данных температуры точки росы и оценка полноты их наличия.

Подозрительными полагаются данные по модулю больше 50 градусов Цельсия, при этом данные, которые по модулю больше 70 градусов Цельсия отбраковываются.

После проведения грубого контроля, данные используются как исходные данные для восстановления.

3. Контроль данных по знаку и величине

Контроль температуры точки росы осуществляется по срочным данным проверенной и восстановленной температуры. Критерий - значение ТОЧКИ РОСЫ не больше значения ТЕМПЕРАТУРЫ за данный срок наблюдений.

Срочное значение контролируется также по величине скачка между сроками слева и справа (в 10 и 20 градусов Цельсия).

4. Восстановление срочных данных интерполяцией по срокам

Временной сплайн применяется при наличии в сумме слева и справа от восстанавливаемого срока не менее 3-х сроков с заданными значениями температуры точки росы, с обязательным наличием данных на обеих временных границах.

Для выборки значений используются по 3 срока слева и справа. Чтобы восстановить больше сроков, процедура повторяется дважды. Применяется процедура интерполяции значений кубическими сплайнами. На границах задается условие равенства нулю вторых производных.

При наличии заданных значений только по 2-м срокам (только на границах) используется линейная интерполяция, при этом временной интервал слева и справа может быть не более 6-ти часов.

5. Восстановление срочных данных интерполяцией по окружающим станциям

Алгоритм восстановления сплайном по пространству аналогичен описанному выше для данных температуры воздуха. Если после выполнения процедуры значения температуры точки росы не удовлетворяют срочным значениям температуры, то

полученные значения температуры точки росы усекаются до значений срочных величин температур.

6. Дополнительные контроли и запись результатов

В процессе восстановления осуществляется контроль за наличием в срочных данных скачков значений величин между сроками больше 10 и 20 градусов Цельсия, анализируются сроки для которых не удалось восстановить значения.

Результат восстановления записывается в файл 'RSyymmdd.txt' в директорию для соответствующего срока анализа (00 или 12 BCB).

Перезапись данных за предшествующий день месяца, даже, если они участвовали в восстановлении данных и возможно сами претерпели изменения, не производится.

1.2.3 Восстановление данных по осадкам

При контроле и восстановлении рассматриваются суточные и полусуточные (ночные, дневные) осадки, получаемые из телеграмм со станций за сроки 00 и 12 ВСВ.

Краткий алгоритм схемы восстановления данных:

1. *Ввод* исходных данных из файла за очередной день месяца и конкретный срок выборки данных из базы.

Данные температуры точки росы за предшествующий день тоже считываются и используются при восстановлении.

2. При считывании проводится грубый контроль достоверности данных температуры точки росы и оценка полноты и согласованности входных данных.

Подозрительными полагаются данные по модулю больше 30 мм, при этом данные больше 200 мм отбраковываются. На данном этапе контроля учитывается ошибка баланса Rcyt=Rночь+Rдень. Если она меньше 1 мм, то подозрительность с данных снимается.

- 3. *Восстановление* данных *внутри станций* производится по правилам, изложенным в таблице 2).
- 4. Все забракованные значения, которые не удалось восстановить по данным внутри станций, выше правилами, восстанавливаются *сплайном по пространству* (по окружающим станциям алгоритм Василенко.

Восстановление по окружающим станциям проводится с использованием всех станций, на которых имеются незабракованные данные по осадкам.

5. Повторный контроль согласования имеющихся и восстановленных данных выше изложенными способами.

Имя файла с входными и выходными данными 'RRyymmdd.txt'.

RR - признак файла с данными по осадкам.

В файле с выходными данными добавляются три колонки с данными для дневных, ночных и суточных значений осадков с признаками осуществленных действий при их восстановлении.

Таблица 2 - Основные правила восстановления данных по осадкам внутри станций

ВХОД	ВЫХОД
Rcyт ≥ 200 мм	RcyT = 999
RcyT = 0	Rночь = Rдень = 0
Rночь = ?	Rночь = Rсут - Rдень
Rдень = ?	Rдень = Rсут - Rночь
Rдень < Rсут и Rночь < Rсут	Rсут = Rночь + Rдень
Rcyr=?	Rсут = Rночь + Rдень
Rночь=? и Rcyт = ?	Rсут = Rдень; Rночь = 0
Rдень=? и Rсут = ?	Rсут = Rночь; Rдень = 0
	·

Примечание – Rcyt, Rночь, Rдень - суточные и полусуточные (ночные, дневные) осадки соответст.

Алгоритм Василенко [1].

Строятся следующие матрицы:

- -Симметричная, состоящая из суммы квадратов расстояний между станциями и координат станций;
- -Матрица неизвестных коэффициентов;
- -Матрица правых частей (значений функций).

Система решается методом Гаусса с выделением главного элемента. С целью уменьшения ошибок округления делается линейная замена переменных, переводящая область в единичный квадрат. После нахождения неизвестных коэффициентов восстанавливается сплайн-функция в любой точке принадлежащей области.

2 ОСНОВНЫЕ МЕТОДИЧЕСКИЕ АЛГОРИТМЫ В ФИЗИКО-СТАТИСТИЧЕСКОЙ СХЕМЕ ПРОГНОЗА

2.1 Состояние проблемы

Подходы к прогнозу погоды на средние сроки прошли все этапы от субъективного анализа до полной автоматизации. Значительное улучшение прогнозов связано с развитием моделирования атмосферных процессов. К настоящему моменту времени, вопервых, значительно возросла успешность гидродинамических прогнозов барических полей на разных уровнях атмосферы, во-вторых, существенно изменилась параметризация большинства физических процессов по сравнению с первыми опытами. Это позволило расширить список прогнозируемых метеоэлементов. Сейчас гидродинамические схемы с достаточно высоким качеством выдают количественное значение ожидаемой температуры воздуха у земли на первые-вторые сутки. Но их успешность неравномерна по пространству и по синоптическим ситуациям. Устранить этот недостаток призваны различные варианты интерпретации гидродинамической продукции. Кроме того, на сроки 2-3-х суток данный подход остается реальной свыше возможностью получения объективных расчетных прогностических методов.

Сибирское направление интерпретации гидродинамических прогнозов развивалось параллельно московскому с 70-х годов прошлого века под руководством И.Г. Храмцовой. К настоящему времени в Западно-Сибирском региональном вычислительном центре (ЗапСибРВЦ) оперативно рассчитывается целый комплекс среднесрочных прогнозов по разработанным в Новосибирске автоматизированным схемам. Первые разработки включают расчет прогнозов экстремальной температуры воздуха, осадков, преобладающей скорости ветра на 1-6 суток по основным пунктам Урало-Сибирского региона [2-5]. Алгоритмы базируются на уравнениях регрессии, построенных на сезонных выборках фактических данных на метеостанциях. Список потенциальных предикторов ограничен выходной продукцией схемы ЕЦСПП того времени, включающей температуру воздуха на АТ-850, геопотенциал на АТ-500 и давление воздуха на уровне станции. В прогностической схеме для осадков впервые появляется принцип адаптивности: прогностические уравнения строятся на выборке, формирующейся по исходным гидродинамическим полям атмосферы. Подбор ближайших производится по первым, описывающим примерно 95% дисперсии, коэффициентам разложения метеополей с использованием естественных ортогональных функций. Более поздние статистические схемы обращены на прогноз редких метеорологических явлений:

сильного ветра, заморозков [6-9]. В этих разработках добавлены алгоритмы распознавания образов.

Прогностическая интерпретационная схема РЭП для температуры и осадков, разработанная в Гидрометцентре России под руководством П.П.Васильева, построена на синхронных связях предиктанта и предикторов по концепции MOS. В этой статистической модели заложен проработанный список основных алгоритмов [10-11], нацеленных на:

- 3. центральное типирование атмосферных процессов для каждого пункта и каждого нового исходного термобарического гидродинамического поля (принцип адаптивности);
- 4. непрерывность по территории прогностических полей;
- 5. учет сезонной и внутрисезонной (по принципу аналогичности) классификации;
- 6. оптимизацию заблаговременности архивов для формирования обучающих выборок.

В связи с увеличением гидродинамической продукции в последние годы в РЭП добавлена оптимизация по включению в расчеты имеющихся базовых полей [11].

Схема автоматизированных среднесрочных прогнозов на базе интерпретации продукции ЕСМF, разработанная в ДВНИГМИ под руководством Е.Г.Вербицкой, ориентирована на выпуск прогнозов температуры и осадков по пунктам территории Хабаровского края, Амурской области, республики Саха, Дальнего Востока [12-15]. Помимо традиционного построения уравнений регрессии и дискриминантного анализа автор использует собственную разработку типизации воздушных масс по теплосодержанию.

Для территории Сибири опыт создания среднесрочных прогностических схем с детализацией по пространству получен в СибНИГМИ по прогнозам экстремальной температуры воздуха, заморозков и осадков в холодное полугодие для пунктов Новосибирской области [16, 17], а также показателей пожароопасности в лесах по метеорологическим условиям [18, 19]. В этих разработках апробированы новые алгоритмы статистической обработки данных, редко используемые в метеорологии. Целью исследования является расширение данного списка станций ДЛЯ автоматизированных среднесрочных прогнозов элементов погоды и показателей пожароопасности в Томской и Кемеровской областях, Алтайском крае, Ханты-Мансийском округе на новой методической базе физико-статистической интерпретации.

2.2 Метод группового учета аргументов

Задача структурного моделирования по исходным матрицам наблюдений сводится к выбору наилучшей линейной регрессии. Разработке принципов и критериев оптимального отбора посвящено немало работ [20, 21]. К одним из них относится метод группового учета аргументов (МГУА) [22, 23], имеющий ряд существенных преимуществ по сравнению с традиционными регрессионными решениями. Основным достоинством метода группового учета аргументов является построение непротиворечивых моделей, то есть дающих устойчивый результат независимо от исходных данных. Если к этому прибавить оптимальность по структуре и по множеству учитываемых переменных в решающих уравнениях, то применение МГУА к метеорологическим данным с целью получения прогнозов разной заблаговременности должно дать более надежный результат, чем регрессионный подход.

МГУА построен на принципе самоорганизации, суть которого состоит в том, что при переборе аргументов и при постепенном усложнении моделей некоторые критерии проходят свой минимум. Алгоритм определяет этот минимум и таким образом указывает на оптимальную модель. Принципиальным отличием МГУА является привлечение внешних критериев. В исследованиях, посвященных прогнозу или восстановлению тех или иных метеорологических полей, до настоящего времени незаслуженно редко используются индуктивные методы математического моделирования, основанные на принципе самоорганизации моделей ПО внешним критериям. Критерий среднеквадратической ошибки, используемый в методе регрессионного анализа, по определению является внутренним, поскольку рассчитан по той же информации, по которой получена сама модель. В [22] показано, что любой внутренний критерий приводит к ложному правилу: чем сложнее модель - тем она точнее. Согласно теореме неполноты Геделя из математической логики только внешние критерии позволяют выбрать единственную модель оптимальной сложности [23].

Итак, в методе группового учета аргументов осуществляется целенаправленный перебор постепенно усложняющихся структур моделей и их отбор по ряду целесообразных эвристических критериев. При этом по основной части исходных фактических данных получаются коэффициенты моделей- претендентов, а по другой оценки этих моделей по выбранным критериям селекции.

В МГУА предусмотрена возможность увеличить первоначально ограниченное число коэффициентов модели применением многорядной селекции. Из всех частных уравнений, построенных на обучающей выборке, выбираются F лучших, дающих

минимальные критерии селекции на контрольной выборке. Во втором ряду образуются пары выходных переменных, прошедших первый ряд, и для каждой из них строятся частные уравнения и т.д. Наращивание рядов селекции продолжается до тех пор, пока основной критерий не начнет расти. Однако предыдущий опыт использования алгоритма показал, что каждый следующий ряд практически не добавляет качества восстановления. Кроме того, при работе на прогностической базе есть риск увеличить произведениями случайные ошибки моделей. Таким образом, для решения наших задач достаточно одного ряда.

Разделение исходной выборки на обучающую и проверочную последовательности определяется главным образом исследователем. Чтобы не попасть в колебания метеопараметров длительного периода, в проверочную часть выборки отобран каждый третий случай из базовой информации.

Из предложенных в [23] внешних критериев селекции нами использованы регулярность и минимум смещения. В качестве критерия регулярности служит относительная среднеквадратическая ошибка

$$\Delta^{2} B = \frac{\sum_{i=1}^{N_{B}} q_{i} - q_{i}^{2}}{\sum_{i=1}^{N_{B}} q_{i}^{2}} \to \min,$$
(7)

где q_i и q_i^* - полученное по модели и действительное значение выходной величины в i-той точке, N_B - число точек проверочной последовательности.

Чем меньше величина относительной среднеквадратической ошибки, тем модель более регулярна.

При большом уровне шумов в исходных данных более устойчивыми к помехам являются различные формы критерия минимума смещения. Суть этого критерия состоит в том, что модели, построенные на разных частях исходной последовательности, должны как можно меньше отличаться друг от друга. Сначала первая последовательность данных является обучающей, а вторая – проверочной (решения $q_i(A)$). Затем, наоборот, вторая является проверочной, а первая – обучающей (решения $q_i(B)$). Близость этих уравнений оценивается по величине среднеквадратического расхождения их выходов по всем точкам последовательности:

$$n_{sm}^{2} = \frac{\sum_{i=1}^{N} \left[q_{i} \ A - q_{i} \ B \right]^{2}}{\sum_{i=1}^{N} q_{ifakt}^{2}},$$
 (8)

Для решаемой задачи в нашем случае выбирались 10 лучших уравнений по критерию регулярности, и из них лучшее по минимуму смещения.

Уравнения получены отдельно для минимальной и максимальной температуры для каждой станции рассматриваемой территории с учетом сезонной классификации и тенденции давления у земли и температуры на AT-850.

2.3 Кластеризация обучающих выборок

При использовании статистических алгоритмов правильно подобранная классификация обучающих выборок - залог повышения устойчивости построенных решений.

Традиционным в метеорологии является учет сезонных колебаний. В оперативно действующей сибирской схеме [2-6] обучающие выборки сформированы по календарным месяцам. При таком подходе в переходный день месяца возможен необоснованный природой скачок в восстановлении предиктанта, вызванный заменой коэффициентов в уравнениях регрессии. В схеме ДВНИГМИ используемый массив данных ежедневно сдвигается на одну дату, интервал для обучения на фиксированном архиве равен 15 дням по обе стороны от текущего [12-15]. В схеме РЭП ГМЦ РФ, где обучающие выборки формируются при каждом расчете, интервал дат составляет три недели относительно текущего дня [10-11]. В действующей схеме для детализированных прогнозов по районам Новосибирской области рабочая выборка формируется также при каждом расчете и имеет переменную величину, основываясь на учете годового хода температуры: в выборку входят даты, для которых средняя многолетняя температура воздуха отличается не более, чем на 5 °C от средней многолетней исходного дня в текущем сезоне [16-17].

В новой разработке авторы вернулись к уже апробированным ранее фиксированным периодам в рабочих архивах, характерным для климата Западной Сибири: холодный — январь, февраль, март, ноябрь, декабрь; переходный — апрель, май, сентябрь, октябрь; теплый — июнь, июль, август. Это обусловлено прежде всего применением мощного алгоритма МГУА, который эффективно отбирает устойчивые решения на большом объеме данных.

Многолетний опыт методических разработок показывает, что качество статистической схемы прогноза повышает *учет внутрисезонных колебаний синоптического масштаба*. Большинство исследователей используют для этой цели в различных вариациях отбор аналоговых ситуаций по критерию Махаланобиса [24]. Такой подход особенно эффективен в адаптивных прогностических схемах. Однако он не всегда

работает при резких изменениях предиктанта или для метеоэлементов с низкой повторяемостью значений, в том числе для опасных явлений погоды. В ДВНИГМИ при разработках прогностических схем для региона, где погода нестандартно связана с синоптическими процессами в силу физико-географических особенностей, определен свой алгоритм деления типов текущих ситуаций по синоптическим процессам и типам воздушных масс [12].

Для территории Западной Сибири в новой разработке апробировано несколько вариантов формирования рабочих выборок на фиксированном архиве:

по знаку суточного изменения давления воздуха на уровне моря при этом знак определяется по большинству из 35 узлов, окружающих станцию; по знаку суточного изменения температуры воздуха на АТ-850; по знаку вертикального градиента температуры; по логическому дереву решений (DW-алгоритму).

DW-алгоритм был применен для выделения резких изменений температуры воздуха на каждой станции региона, отдельно для значительных похолоданий и потеплений, и для кластеризации осадков. Данный алгоритм разработан в Институте математики СО РАН СССР [25, 26]. Алгоритм предполагает на входе генеральную совокупность признаков, соответствующих анализируемым объектам (ситуациям), которые в свою очередь относятся к первому или второму образу (классу). Необходимо на основе обучающей матрицы построить в классе логических деревьев решающее правило, по которому каждому вектору информативных признаков соответствует образ 1 или образ 2. Алгоритм перебора при построении дерева решений основан на принципе "лучший к лучшему". На первом шаге строится лучшее согласно некоторому заданному критерию разделение совокупности на две группы (ветки). Затем процесс повторяется уже для каждой полученной группы объектов и т.д.. В качестве условий останова выступают либо ограничение количества вершин дерева, либо минимально допустимое число объектов на ветке.

Реализованный на ПЭВМ алгоритм достаточно быстро выдает готовое решение. Это позволяет произвести большое количество экспериментов отдельно для каждой станции, меняя вид и количество определяющих признаков и критерии для разделения образов. В нашем случае выбор параметров ориентирован на выходную продукцию базовых моделей UKMO и ECMF, их потенциальный список представлен ранее в таблице 1.

- 3 РАЗРАБОТКА МЕТОДА ПРОГНОЗА ЭКСТРЕМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА
- 3.1 Оценка архивной выборки температуры относительно климатических параметров
- 3.1.1 Аномалия средних месячных температур воздуха за период 2000-2008 на юго-востоке Западной Сибири

Выборка средней месячной температуры воздуха за период 2000 – 2008 годов по 113 метеостанциям на территории Кемеровской, Новосибирской, Томской областей и Алтайского края оценена относительно средних климатических данных.

Климатической нормой, по решению ВМО, считается среднее значение метеорологической величины за 30 лет. В настоящее время используется 30-летний базовый период - с 1961 по 1990 годы. Данные о средней месячной температуре воздуха по станциям, имеющим ряд наблюдений менее 30 лет, получены методом приведения.

Отклонение средней месячной температуры воздуха от климатической нормы называют аномалией средней месячной температуры данного месяца. Среднемесячные температуры воздуха за период 2000-2008 годов представлены в таблице В.1, а отклонения их от нормы в таблицах В.2 - В.5 (приложение В) и рисунках 3-6 отдельно по областям региона.

Аномалия средней месячной температуры воздуха в январе.

В январе на территории юго-востока Западной Сибири аномалия средней месячной температуры воздуха изменяется от плюс 1,1 до минус 1,1 °C. На большей части территории температура января близка к норме (аномалия от 0,0 до ±0,3 °C). Положительная аномалия температуры воздуха до 0,5...0,8 °C отмечается на территории северо-востока, северо-запада и юго-запада Томской области, на западе Новосибирской области и Алтайского края, в районе Кузнецкого Алатау и на юге Кемеровской области, отрицательная аномалия — в предгорных районах Алтайского края. Наиболее значительные отклонения от нормы (более 1,0 °C) отмечены в отдельных районах на юго-юго-востоке Кемеровской области.

Таким образом, средняя месячная температура января за период 2000-2008 гг. в основном выше нормы (положительная аномалия варьирует от 0,1 до 1,0 °C), и лишь в отдельных районах центральной части территории, на юге Алтайского края и юго-востоке Кемеровской области – ниже нормы (от 0,1 до 1,1 °C).

Аномалия средней месячной температуры воздуха в феврале.

На всей территории юго-востока Западной Сибири для периода 2000-2008 гг. наблюдается аномально теплый февраль.

В феврале аномалия средней месячной температуры воздуха положительная на всей территории и изменяется от 1,7 до 4,2 °C. На крайнем северо-западе и юго-востоке – аномалии температуры наименьшие (до 3,0 °C), на значительной территории – превышают 3,0 °C.

Аномалия средней месячной температуры воздуха в марте.

В марте на всей территории юго-востока Западной Сибири наблюдается также аномально теплая погода.

В марте аномалия средней месячной температуры воздуха увеличивается с севера и востока на юго-запад территории, изменяясь от 1,0 до 4,3 °C. Аномалия температуры воздуха сильно варьирует по территории Алтайского края и Кемеровской области.

Аномалия средней месячной температуры воздуха в апреле.

В апреле аномалии средней месячной температуры воздуха продолжают оставаться положительными (за исключением Междуреченска - минус 0,4 °C), но значения их невелики (не превышают 1,8 °C).

Таким образом, в апреле на большей территории юго-востока Западной Сибири для периода 2000-2008 гг. наблюдается теплая погода.

Аномалия средней месячной температуры воздуха в мае.

В мае положительная аномалия средней месячной температуры воздуха увеличивается по всей территории по сравнению с апрелем и изменяется от 0,8 до 3,2 °C. Она растет с юга на север территории, превышая 3,0 °C в центральных районах Томской области (Колпашево, Подгорное, Молчаново, Батурино). Аномалия температуры воздуха сильно варьирует по территории Алтайского края и Кемеровской области.

Таким образом, в мае на всей территории юго-востока Западной Сибири для периода 2000-2008 гг. отмечается аномально теплая погода.

Аномалия средней месячной температуры воздуха в июне.

В июне аномалия средней месячной температуры воздуха продолжает оставаться положительной на всей территории и изменяется от 0,1 до 2,6 °C. Наибольшие отклонения температуры воздуха, превышающие 2,0 °C, отмечены на севере Томской области (Александровское, Ванжиль-Кынак). К юго-западу территории они постепенно уменьшаются до 0,1 °C.

Таким образом, в июне на всей территории юго-востока Западной Сибири для периода 2000-2008 гг. наблюдается теплая погода.

Аномалия средней месячной температуры воздуха в июле.

На основной части территории аномалия средней месячной температуры воздуха в июле отрицательная, лишь на крайнем юго-востоке Кемеровской области она положительная и составляет от 0,0 до 0,8 °C. Отрицательные отклонения температуры воздуха увеличиваются по территории с востока на запад, достигая наибольших значений (от 1,0 до 1,3 °C).

Таким образом, в июле на преобладающей части территории юго-востока Западной Сибири для периода 2000-2008 гг. наблюдается прохладная погода по сравнению с климатической нормой.

Аномалия средней месячной температуры воздуха в августе.

В августе аномалия средней месячной температуры воздуха положительная на всей территории и, увеличиваясь с севера на юг, не превышает 1,2 °C.

Таким образом, в августе на территории юго-востока Западной Сибири для периода 2000-2008 гг. температура воздуха близка к климатической норме и выше её.

Аномалия средней месячной температуры воздуха в сентябре.

На основной части территории аномалия средней месячной температуры воздуха в сентябре положительная, кроме юга Кемеровской области (Междуреченск), где отмечена отрицательная аномалия - минус 0,4 °C. В отдельных районах на северо-западе Новосибирской (Усть-Тарка, Северное), на западе Кемеровской (Красное, Промышленная) и в центральных районах Томской (Подгорное, Батурино) областей аномалия достигает плюс 1,1...1,2 °C.

Таким образом, в сентябре на значительной части территории юго-востока Западной Сибири для периода 2000-2008 гг. температура воздуха отмечается выше климатической нормы.

Аномалия средней месячной температуры воздуха в октябре.

В октябре аномалия средней месячной температуры воздуха продолжает оставаться положительной на всей территории, кроме юга Кемеровской области (Междуреченск), где отмечена отрицательная аномалия - минус 0,5 °C. Положительная аномалия температуры воздуха увеличивается с востока на запад до плюс 1,6 °C.

Таким образом, в октябре на основной территории юго-востока Западной Сибири для периода 2000-2008 гг. температура воздуха отмечается выше климатической нормы.

Аномалия средней месячной температуры воздуха в ноябре.

В ноябре на всей территории аномалия средней месячной температуры воздуха положительная и изменяется от 1,1 до 3,1 °C. Так, на севере Томской области, в отдельных районах на юге и востоке Кемеровской области (Кондома, Тисуль), на юго-

востоке Алтайского края (Солонешное) аномалия температуры воздуха составляет от плюс 1,1 до плюс 2,0 °C. В отдельных районах на западе Новосибирской области (Здвинск) и юге Алтайского края (Поспелиха) аномалия температуры превышает плюс 3,0 °C. Аномалия температуры воздуха сильно варьирует по территории Алтайского края и Кемеровской области.

Таким образом, в ноябре на территории юго-востока Западной Сибири для периода 2000-2008 гг. отмечается аномально теплая погода.

Аномалия средней месячной температуры воздуха в декабре.

В декабре на большей части территории отклонения от нормы продолжают оставаться положительными, но по своим значениям они заметно уступают предыдущему месяцу (от 0,1 до 1,3 °C). На севере и западе Томской области, в отдельных районах на юге и востоке Кемеровской области (Междуреченск, Тисуль), на юго-востоке Алтайского края (Солонешное) наблюдается отрицательная аномалия температуры воздуха – до минус 0,8 °C.

Таким образом, в декабре на основной территории юго-востока Западной Сибири для периода 2000-2008 гг. отмечается теплая погода, за исключением северных и восточных районов.

Средняя месячная температура воздуха для периода 2000-2008 гг. указывает на продолжающееся потепление климата в начале XXI века. В годовом ходе аномалий температуры воздуха можно выделить следующие особенности.

Аномалия средней месячной температуры от месяца к месяцу различна. Этот факт хорошо проиллюстрирован на рисунках. 3-6. Средняя месячная температура декабря и января близка к норме. Положительные и отрицательные отклонения от нормы в эти месяцы не превышают 1,3 °C. Положительная аномалия температуры воздуха на территории юго-востока Западной Сибири для периода 2000-2008 гг. повсеместно отмечается в феврале, марте, мае, июне, августе и ноябре. В феврале и марте наблюдается максимальная положительная аномалия, она достигает 4,0...4,3 °C.

Летом положительная аномалия температуры воздуха уменьшается, а в июле повсеместно наблюдается отрицательная аномалия температуры воздуха.

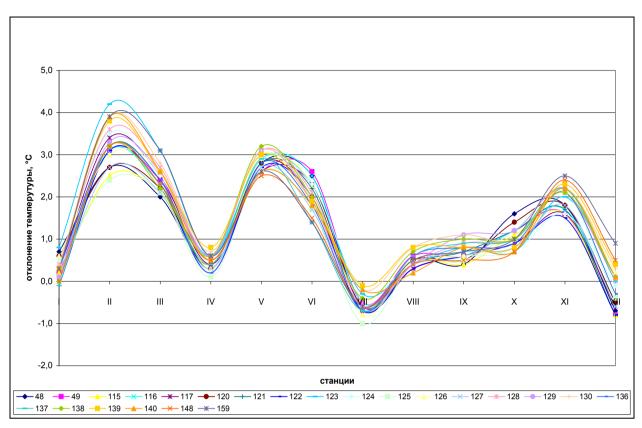


Рисунок 3 - Аномалия средней месячной температуры воздуха для периода 2000-2008 гг. в Томской области

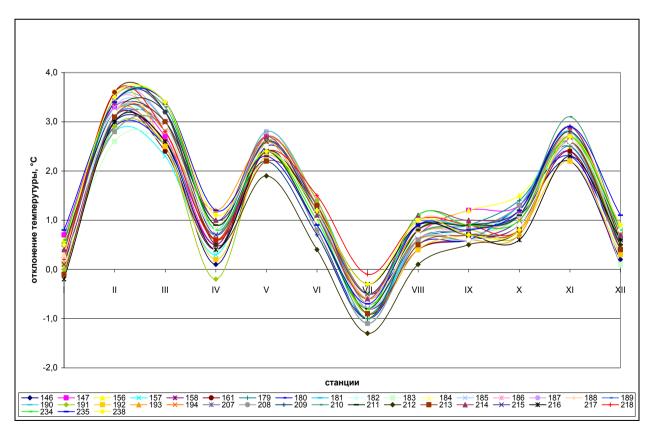


Рисунок 4 - Аномалия средней месячной температуры воздуха для периода 2000-2008 гг. в Новосибирской области

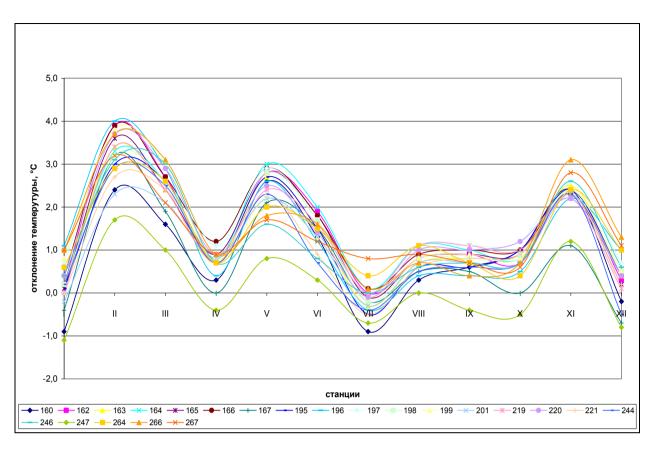


Рисунок 5 - Аномалия средней месячной температуры воздуха для периода 2000-2008 гг. в Кемеровской области

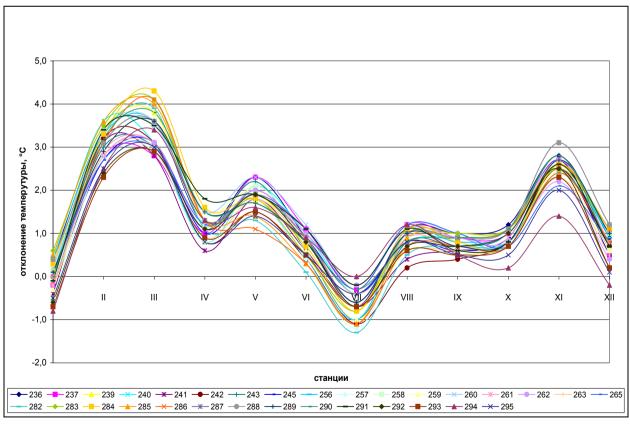


Рисунок 6 - Аномалия средней месячной температуры воздуха для периода 2000-2008 гг. в Алтайском крае

3.1.2 Характеристика междусуточной изменчивости температуры воздуха в разные периоды года

Междусуточная изменчивость температуры воздуха зависит главным образом от адвективного фактора и может служить показателем изменчивости погоды. Влияние радиации на величину междусуточной изменчивости в среднем за год невелико, максимум влияния на юго-востоке Западной Сибири приходится на март и сентябрь.

Междусуточная изменчивость рассчитана за холодный, теплый и переходные периоды как разность средних суточных температур воздуха данного и предыдущего дней за период с 01.2000 по 03.2008 гг.

Холодный период. Наибольшей изменчивостью подвержена температура воздуха от суток к суткам в зимнее время. На всей рассматриваемой территории повторяемость междусуточной изменчивости температуры воздуха менее 5 °C колеблется в пределах 62 – 79 % (рисунок 7). Наименьшая в данной градации повторяемость (62 – 68 %) приходится на крайние север и юг территории, а также на юго-восточные районы Новосибирской области, пограничные с Алтайским краем и Кемеровской областью. В отдельных пунктах небольшими островками отмечается повышение повторяемости, от 76 до 79 %.

Повторяемость междусуточной изменчивости температуры воздуха более 5 °C увеличивается от 22 – 26 % с юго-запада и отдельных районов центральной части до 37 - 38 % на крайнем северо-северо-востоке Томской области и станции Искитим Новосибирской области (рисунок 8).

Зимой до 10-11 % случаев междусуточная изменчивость достигает 10 °C и более, подобное наблюдается на севере Томской области, в Искитиме и Маслянино Новосибирской области. На всей остальной части территории она составляет 4-9 % и лишь в Центральном Руднике Кемеровской области -3 % (рисунок 9).

Надо отметить, что за холодный сезон почти повсеместно возможны случаи повышения междусуточной изменчивости температуры воздуха до 15 °C и более (1–2 %), а в отдельных районах (Александровское Томской области, Красное и Крапивино Кемеровской области, Маслянино Новосибирской области) – 3 %.

Теплый период. Изменение температуры воздуха от суток к суткам в летний сезон носит более спокойный характер, таких резких контрастов, как в зимний период, не наблюдается. Отсутствие данных в последних двух градациях (≥10 и ≥15 °C) подтверждает это.

Преобладающее число случаев (более 90 %) с междусуточной изменчивостью менее 5 °C прослеживается по всей территории, наименьшее из них (93 %) приходится

Ключам (Алтайский край), наибольшее (98 %) — на крайний юго-восток территории (рис.4). Абсолютные величины повторяемости междусуточной изменчивости более пяти, но не достигшие десяти градусов Цельсия, отмечены в тех же пунктах, только Ключам теперь соответствует максимум (7 %), а юго-востоку - минимум (2 %) (рисунок 10).

Переходный период. По сравнению с теплым периодом разность средних суточных температур воздуха в переходные сезоны увеличивается. Здесь встречаются случаи, когда величина междусуточной изменчивости достигает и превышает 10 °C (до 2 %).

Пределы варьирования повторяемости междусуточной изменчивости менее 5 °C незначительные (81 - 91 %) (рисунок 11).

Верхние пределы (17-19%) значений повторяемости суточной изменчивости, равной и более 5 °C, характерны для северных районов нашей территории и предгорий Алтая, нижние (8-10%) – отмечены в Квашнино и на самом юго-востоке Кемеровской области (рисунок 12).

Итак, температура воздуха от суток к суткам подвержена существенным изменениям, как по территории, так и по сезонам года.

Более однородный характер распределения междусуточной изменчивости температуры воздуха отмечен в теплый период, хотя в отдельные дни и в этот период наблюдаются значительные колебания температуры воздуха от суток к суткам. Однако, в среднем, они не достигают 10 °C.

Зимой междусуточная изменчивость на участках с застоем холодного воздуха больше, а на участках с хорошим турбулентным обменом несколько меньше по сравнению с ровным местом.

Можно отметить некоторые станции, где междусуточная изменчивость температуры воздуха не всегда поддается общему распределению по территории в целом: Посевная, Искитим, Маслянино, Квашнино (Новосибирская область), Центральный Рудник (Кемеровская область), Благовещенка, Ключи (Алтайский край). Именно на этих станциях прогноз температуры воздуха представляет особую трудность.

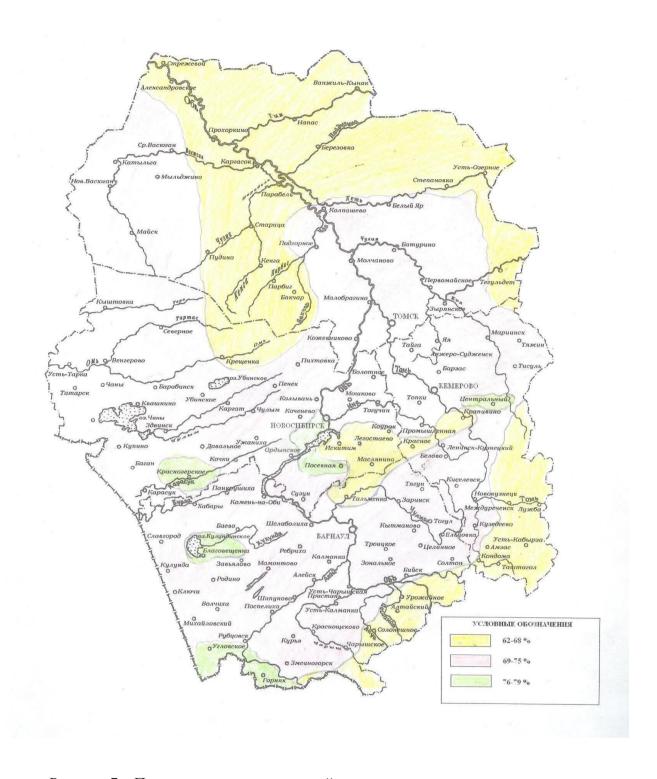


Рисунок 7 — Повторяемость межсуточной изменчивости температуры воздуха менее 5 °C в холодный период

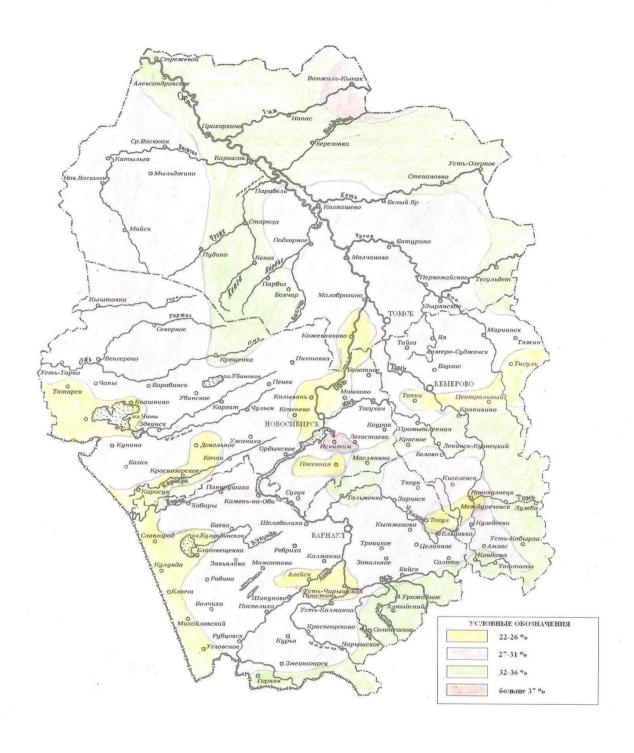


Рисунок 8 - Повторяемость межсуточной изменчивости температуры воздуха более 5 °C в холодный период

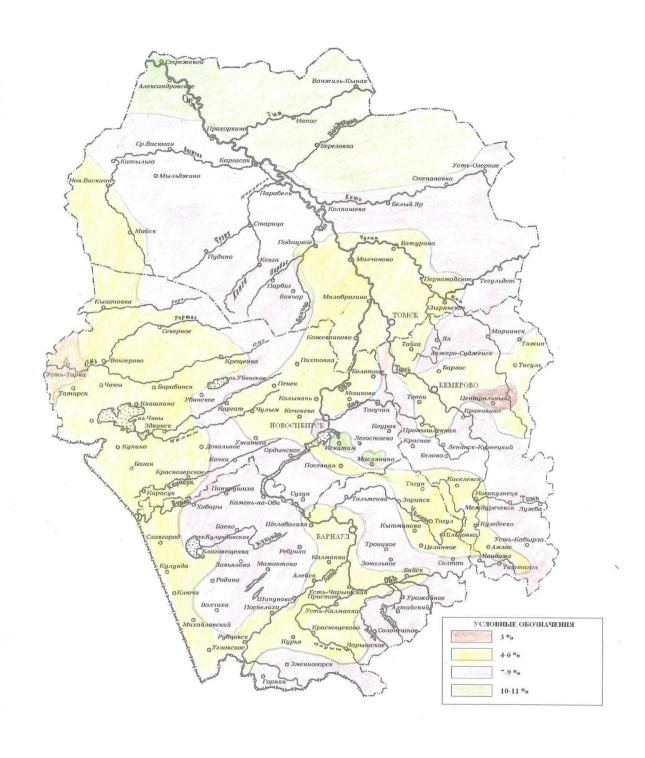


Рисунок 9 - Повторяемость межсуточной изменчивости температуры воздуха $10\ ^{\circ}\mathrm{C}$ и более в холодный период

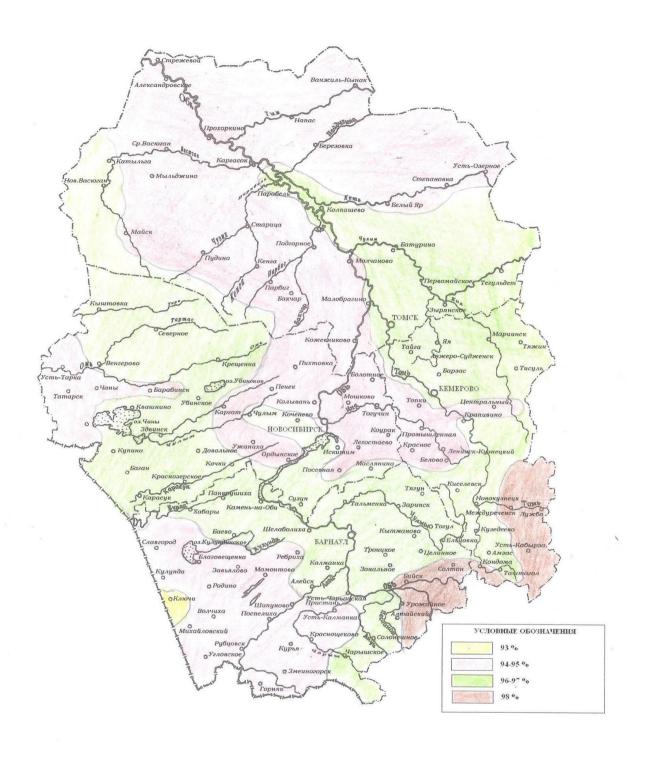


Рисунок 10 - Повторяемость межсуточной изменчивости температуры воздуха $\mbox{ менее 5 °C в теплый период}$

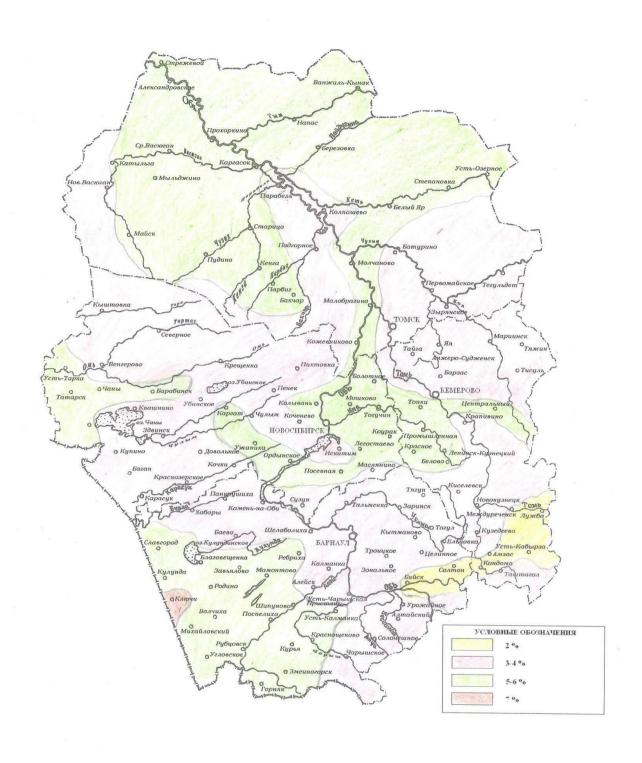


Рисунок 11 - Повторяемость межсуточной изменчивости температуры воздуха более 5 °C в теплый период

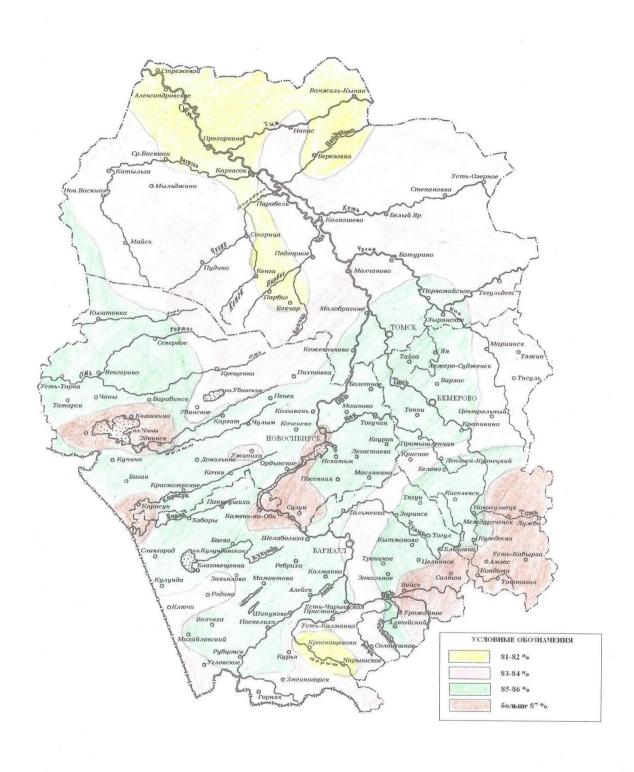


Рисунок 12 - Повторяемость межсуточной изменчивости температуры воздуха менее 5 °C в переходный период

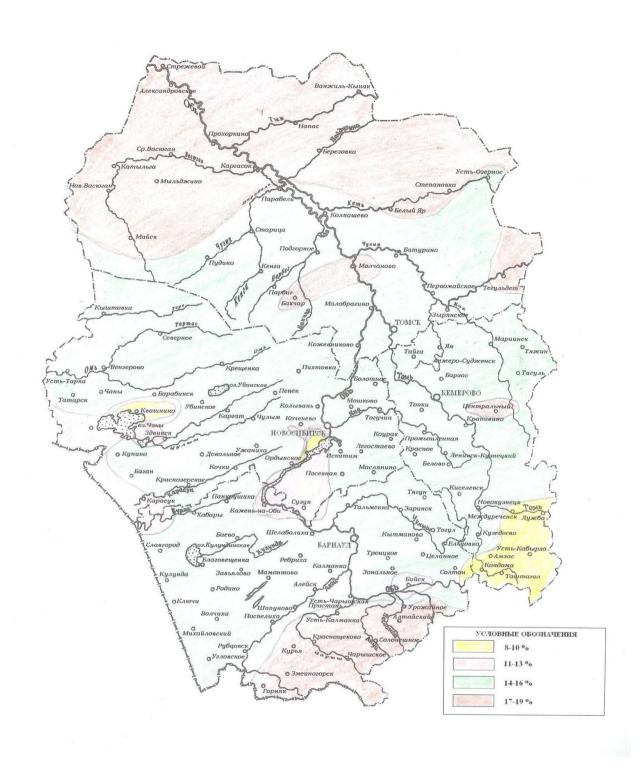


Рисунок 13 - Повторяемость межсуточной изменчивости температуры воздуха более 5 $^{\circ}$ C в переходный период

3.2 Информативность потенциальных предикторов

Применение статистических аппаратов повышает эффективность методов, если предварительно исследователь закладывает физические связи между предиктантом и предикторами. Кроме того, использование в разработках таких алгоритмов как МГУА, построенных на переборе признаков, заметно сэкономит затраченное время при предварительном отсеве малоинформативных предикторов.

Для определения значимости признаков из первоначального списка (таблица 1) уже учитывающего физику синоптических процессов и связь их с погодой, мы воспользовались алгоритмом DW, который в процессе кластеризации ситуаций осуществляет быстрый перебор всех заложенных значений предикторов и выбирает оптимальные для наилучшего разделения классов. Для прогноза температуры рассмотрены логические деревья, отделяющие классы похолоданий и потеплений от остальных ситуаций. Деревья построены по трем периодам года для каждой станции региона, отдельно для максимальной (Tmax) и минимальной (Tmin) температур. К похолоданиям отнесены ситуации с суточным изменением температуры воздуха у земли на рассматриваемой станции меньше или равным 5 °C, соответственно к потеплениям – больше или равным 5 °C.

Повторяемость признаков в DW-деревьях в сумме по всем станциям региона приведена в таблице 3. Анализ показывает, что в холодный период самыми репрезентативными признаками грядущих изменений температуры воздуха у земли являются тенденции давления у земли и тенденции температуры воздуха на АТ-850, причем в равной степени в отличие от других периодов года.. Важно отметить, что изменения давления предшествуют изменениям температуры воздуха у земли: признаки суточной тенденции давления чаще репрезентативны на начало рассматриваемых в прогнозе полусуток. Изменения тропосферной температуры в ночное время протекают синхронно изменениям температуры воздуха у земли. В дневное время тенденции температуры на АТ-850, также как и тенденции давления, предупреждают изменения в температурном поле у земли. Повторяемость остальных признаков, подаваемых на вход алгоритма DW-разделения инерционных и динамических ситуаций в температурном поле земли, неравномерно распределена по отдельным областям Западной Сибири и по суточным периодам предиктанта. Так, значения геопотенциала Н500 (1 и 18 параметры) в основном отмечены для территории Новосибирской области в случаях связанных с потеплением. Лапласианы и градиенты данного элемента (9, 26 и 10, 27 параметры) попали лишь в "деревья" для дневных похолоданий на севере региона - в ХМАО. А вот произошедшие изменения гепотенциала (11 и 28 параметры) влекут за собой как похолодания, так и потепления. Градиент давления (13, 30 параметры) в решающих ветках дерева кластеризации отмечен в единичных случаях, а вот повторяемость лапласиана давления (12, 29 параметры) максимальна на территории Алтайского края для всех ситуаций, в остальных областях региона данный параметр встречается в случаях выделения потеплений.

В переходном и теплом периодах (таблица 3) на первом месте во всех решениях повторяемость тенденций температуры воздуха на АТ-850 (17, 34 параметры). Тенденция давления (8, 25, 14, 31 параметры) осталась актуальным показателем изменений в температурном поле земли лишь в ночное время. Характеристики геопотенциала: лапласианы, градиенты, суточные изменения (9-11, 26-28 параметры) чаще встречаются в ситуациях с повышением ночной температуры.

Таблица 3 - Повторяемость (%) признаков в DW-деревьях разделения похолоданий (-) и потеплений (+)

)a	XO.	лодні	ЫЙ пер	иод	ПЕР	ЕХОДН	ІЫЙ пе	риод	T	ЕПЛЫЙ	Й перис	ЭД
эр мет <u>г</u>		Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax
Номер параметра	Tmin-	-	+	+	-	-	+	+	-	-	+	+
1	1,0	1,5	1,3	0,7	0,8	0,3	0,7	0,7	1,2	0,8	1,4	1,4
2	1,0	0,3	0,6	0,4	0,4	0,1	0,3	0,3	0,9	0,3	0,4	0,8
3	0,4	0,3	0,9	0,2	0,2	0,4	0,7	0,7	0,8	0,3	1,7	0,6
4	0,6	0,3	0,6	0,4	0,7	0,9	0,6	0,9	1,0	1,4	1,1	0,4
5	4,7	3,2	14,6	7,5	6,8	3,9	9,2	7,1	8,7	6,8	7,1	7,8
6	0,7	1,0	0,3	0,7	0,5	0,2	0,3	0,5	0,4	0,3	1,5	0,8
7	2,2	2,8	1,0	0,7	0,7	1,4	0,4	0,8	3,4	0,5	1,9	0,6
8	4,8	2,2	3,0	10,0	2,8	1,1	0,9	2,0	2,9	1,4	1,7	1,1
9	2,5	2,8	1,5	2,1	1,9	2,1	2,8	3,1	2,7	3,2	3,1	2,8
10	2,1	2,3	1,8	1,4	3,1	1,0	3,7	2,1	3,9	2,5	3,2	2,1
11	3,2	1,8	11,1	4,9	2,5	1,8	3,8	2,7	2,4	2,9	3,4	3,6
12	6,2	3,8	6,5	3,0	5,7	5,9	6,9	2,8	6,0	3,7	3,7	4,1
13	3,5	2,2	4,3	3,3	2,8	2,1	3,8	1,9	2,6	2,7	3,2	2,9
14	21,0	8,5	14,6	11,7	14,7	1,3	12,1	2,2	4,8	1,7	10,1	2,6
15	4,2	3,4	2,4	2,1	4,0	2,6	3,9	2,3	3,7	3,5	4,4	3,4
16	3,0	3,5	2,1	2,3	4,7	3,4	2,6	3,3	3,1	2,9	3,8	3,6
17	10,4	14,8	7,4	6,3	21,0	20,7	18,7	12,0	21,2	8,9	15,0	4,2
18	1,2	0,6	0,2	0,4	0,3	0,7	0,6	0,5	0,2	0,5	0,8	0,8
19	1,0	0,3	0,4	0,4	0,4	0,1	0,1	0,8	0,5	0,0	1,3	0,8
20	0,9	0,4	0,3	1,0	0,5	0,4	0,7	0,3	0,2	0,5	1,2	0,8
21	0,6	0,7	0,7	0,8	0,2	1,2	0,4	0,9	0,7	0,5	1,3	0,5
22	3,0	3,8	4,7	6,7	3,9	4,3	4,0	4,9	6,2	5,4	5,2	5,6
23	0,6	0,4	0,2	0,5	0,5	0,3	0,4	0,6	0,8	0,1	0,6	1,0
24	0,7	1,5	0,8	0,2	0,8	0,4	0,3	1,0	1,1	0,3	0,5	1,3
25	1,8	6,8	1,1	1,7	0,8	0,8	0,6	2,0	0,7	1,7	1,6	1,6
26	1,8	0,9	1,5	2,3	2,2	2,4	3,3	2,3	2,6	1,6	3,0	2,6
27	1,3	1,6	1,7	0,9	1,6	2,0	2,2	2,3	3,0	1,1	3,2	3,5
28	1,3	1,6	2,7	4,3	1,3	1,8	1,7	3,5	2,1	1,9	2,0	3,1
29	2,2	3,1	1,8	3,4	2,9	3,3	3,1	4,3	2,1	3,2	2,4	1,8
30	2,2	1,5	1,6	2,2	1,3	1,0	1,8	2,2	1,5	2,6	1,9	3,1
31	1,4	7,9	1,4	7,0	2,2	1,1	1,7	1,4	1,7	1,3	1,1	1,7
32	3,2	2,7	2,5	2,5	2,7	3,3	3,5	5,1	2,9	3,7	2,4	5,0
33	2,9	2,2	1,3	2,1	2,8	2,4	1,7	3,4	2,2	2,0	2,3	2,0
34	2,4	9,3	3,2	6,1	2,3	25,3	2,5	19,1	1,5	30,0	2,5	32,0

3.3 Разработка метода прогноза экстремальной температуры воздуха

Метод прогноза температуры базируется на уравнениях МГУА (раздел 2.2 настоящего отчета), построенных для каждой станции рассматриваемого региона, отдельно для минимальной и максимальной температур воздуха. Рабочая выборка сформирована по трем периодам года: холодный (январь-март, ноябрь-декабрь), переходный (апрель-май, сентябрь-октябрь), теплый (июнь-июль).

В ходе исследования апробировано несколько вариантов внутрисезонной кластеризации рабочих выборок. Построение уравнений МГУА по распознанным с помощью DW-алгоритма выборкам с потеплениями, похолоданиями или инерционными ситуациями не привело к хорошим результатам. Более эффективным оказалось предварительное деление выборок по знаку ожидаемой тенденции (суточного изменения) давления у земли или температуры на AT850. Знак определяется по большинству из значений изменений в секторе из 15⁰ по широте и 10⁰ по долготе, всего на 35 узлах сетки GRIB, окружающих рассматриваемую станцию. При этом относительно станции западная граница сектора больше смещена на запад (на 5⁰).

Эксперименты на независимом материале 2009 года позволили определить окончательный выбор уравнений МГУА для восстановления температуры воздуха. В теплом и переходном периоде для большинства равнинных станций оптимальные уравнения получены на выборке по знаку изменения температуры на АТ850, исключения по знаку изменения давления - для отдельных возвышенных станций. В холодном периоде для минимальных температур лучше работают уравнения на изменениях давления, поскольку в этом периоде года довольно большую повторяемость в Западной Сибири имеют ситуации с устойчивым вертикальным градиентом температуры - инверсиями, и тогда ход температуры на уровне 1,5 км не отражает ситуацию у земли.

РАЗРАБОТКА МЕТОДОВ ПРОГНОЗА ПОКАЗАТЕЛЕЙ ВЛАЖНОСТИ

При оценке пожароопасности в лесах по метеорологическим условиям показателями влажности являются выпавшие осадки и накопленный дефицит влаги в атмосфере.

Метод прогноза осадков

Метод прогноза осадков включает два шага:

- оценка класса ожидаемых осадков;
- восстановление количества осадков по соответствующему уравнению МГУА.

Для кластеризации осадков применен алгоритм DW. Для каждой станции региона по сезонам отдельно для ночных и дневных осадков построены деревья для выделения ситуаций трех классов: без осадков, с осадками, с умеренными осадками. При этом для более качественной оценки именно ситуации важно правильно сформировать по классам рабочую матрицу, подаваемую на вход DW. Для этой цели разработан отдельный алгоритм определения класса осадков на заданной станции с привлечением данных по осадкам на окружающей территории. Первоначально отбираются близкие станции по следующим шагам:

- расчет расстояний между станциями по формуле (2) и выбор шести минимальных;
- отбор из шести ближайших станций однородных по полю осадков.

Для оценки однородности поля осадков получена повторяемость разных градаций осадков для каждой станции региона по всем месяцам (2000-2006гг.) и по периодам года. В таблице С.1 (приложение С) приведена повторяемость количества выпавших осадков следующих градаций:

- 1 меньше или равно 0,4 мм;
- 2 от 0,5 до 5,0 мм;
- 3 от 5,1 до 10,0 мм;
- 4 больше 10 мм.

Анализ данных в таблице подтверждает климатические особенности отдельных станций, связанные с физико-географическим положением. Так, в холодном периоде на станциях Кош-Агач (горный Алтай) (313) и Усть-Уса (303) практически все время без осадков, в рабочей выборке вероятность осадков лишь 4-6 %. На станции Кош-Агач осадки редки и в остальные периоды года: больше 80 % без осадков, а сильные

наблюдались лишь в теплом периоде ночью и днем по 5 раз. 70-80 % без осадков или очень слабых на станции Канск (177-Красноярский край), в холодном периоде осадки более 4 мм не наблюдались, а сильные зафиксированы в переходном и теплом периодах (2-5 %), осадков больше 19 мм нет. В холодном периоде на станциях Верещагино (23), Толька (30), Келлог (33), Северо-Енисейск (53) осадки выпадают лишь в трети случаев. Более частое выпадение осадков во все сезоны на северо-востоке Западной Сибири: Большой Порог, Тарко-Сале, Верещагино, Тутон-Чаны, Халесовая, Толька, Корлики.

Сильные осадки (начиная с 20 мм) отмечены в выборке только в теплом периоде, подтверждая преимущественное происхождение в результате дневной конвекции. Единичные случаи ночью отмечены на 167 станциях, днем этот класс осадков почти в два раза чаще. На станциях, окружающих Ханты-Мансийск (38, 44, 45) (Сытомино, Ханты-Мансийск, Алтай) и в томской области - Пудино (136) сильные осадки отмечены и ночью и днем более чем в 5 % случаев от общей выборки.

На большинстве станций число случаев без осадков или очень слабых составляет 40-60 % в течение всего года, ниже 30 % случаев первая градация не отмечена ни на одной станции.

Условия для формирования сектора однородного поля осадков для рассматриваемой станции выработаны на сопоставлении значений вероятности осадков соответствующих градаций данной станции с каждой из шести ближайших:

- разность вероятностей осадков первой градации (без осадков и слабые) < 6 % и
- разность вероятностей осадков больше 5 мм < 6 %.

При не выполнении хотя бы одного из условий данные по осадкам «близкой» станции в рассматриваемый сектор не привлекаются, несмотря на расстояние.

Далее для оценки исходного класса осадков анализируется сумма осадков в секторе (SUMos), максимальные осадки в секторе (MAXos), значения осадков на заданной станции (STANos) и число станций в секторе, на которых осадки превышают заданную градацию (NSH). Полученный алгоритм определения ранжированного класса осадков приведен в таблице 4.

Таким образом, для подачи на вход построения DW-дерева в зависимости от периода года и поставленной цели можно подавать любую пару классов, сформированную из данной ранжировки ситуаций. В нашем случае для каждой станции построены логические деревья раздела класса «без осадков» от всех осадков, то есть пара составлена из 1 и 2-4 классов по таблице С.4, и для выделения умеренных осадков - из 2 и 3-4 классов.

Таблица 4 - Определение номера класса осадков

Базовый параметр	Условия	Номер класса
SUMos	< 0,4 mm	1
MAXos	< 5 mm	2
STANos	> 0,3 µ < 3 mm	2
NSH<3	> 2 mm	2
MAXos	> 4 и < 11 mm	3
NSH>2	>2 и <6 mm	3
STANos	> 2 mm	3
MAXos	> 10 mm	4
NSH>2	> 6 mm	4

На выборках, полученных по DW-деревьям, для классов «осадки» и «умеренные осадки» построены уравнения МГУА, позволяющие рассчитать количество осадков с учетом ошибок восстановления класса по логическим правилам. В матрицу признаков для МГУА вошли наиболее информативные по выходным веткам DW аналогично описанному в разделе 3.2 анализу для температуры. Уравнения построены для каждой станции по периодам года отдельно для ночных и дневных осадков

Обратное восстановление прогностических значений имеет также два шага: определение класса по DW и в случае получения класса осадков или умеренных осадков - расчет количества по соответствующим уравнениям МГУА.

4.2 Метод прогноза дефицита влаги

К характеристикам влажности в атмосфере относятся:

- упругость (парциальное давление) водяного пара (мб),
- абсолютная влажность (г/м3),
- относительная влажность (%),
- удельная влажность (г/кг),
- отношение смеси,
- дефицит влажности,
- точка росы или дефицит точки росы.

Разница между показателями "сухого" (температура воздуха) и смоченного термометров отражает количество влаги в атмосфере при данной температуре: чем ниже влажность воздуха, тем больше скорость процесса испарения и тем самым ниже температура смоченного термометра.

Для многих задач важно знать не само количество водяного пара в атмосфере, а его соотношение с упругостью насыщения, то есть с максимально возможным давлением пара при данной температуре. После достижения упругости насыщения начинается процесс конденсации, а его дефицит отражает условия для испарения.

Дефицит упругости насыщения, связан с дефицитом точки росы психрометрической формулой на основании закона Дальтона о скорости испарения и закона охлаждения Ньютона [27]:

$$E - E_{\tau} = aP(T - \tau), \tag{9}$$

где E - упругость водяного пара, E_{τ} - максимальная упругость водяного пара при температуре смоченного термометра (τ), P - атмосферное давление, а - психрометрическая постоянная.

Для показателя пожарной опасности по Нестерову более просто определяемая правая часть этой формулы нелинейно связывается с температурой воздуха произведением: $\tau^*(T-\tau)$. Однако на самом деле упругость насыщения имеет экспоненциальную зависимость от температуры. В предыдущих исследованиях для Новосибирской области уже апробирован расчет показателя пожароопасности на базе дефицита упругости насыщения по эмпирической формуле Магнуса [28]:

$$E = E_0 * 10^{\overline{b+t}},\tag{10}$$

где E_o (6,1078 мб) - упругость насыщения при температуре T_o =273,15 (°K), а и b - постоянные, определены для поверхностей воды и льда, t -температура воздуха. Коэффициенты а и b определены в уравнении Клаузиса-Клапейрона [28]:

$$E = E_0 * 10^{273,15+t}, \tag{11}$$

В [19] показано, что на первые сутки оценки прогнозов показателя Нестерова на базе накопленного дефицита точки росы примерно совпадают с оценками прогнозов на базе дефицита упругости насыщения, но на 3-5 сутки преимущество второго подхода растет.

В данной разработке для проверки этого вывода получены уравнения МГУА как для дефицита точки росы, так и для дефицита упругости насыщения.

Уравнения построены для каждой станции региона по периодам года для дневного времени (06 и 09 BCB).

5 ТЕХНОЛОГИЯ РАСЧЕТА ПОКАЗАТЕЛЯ ПОЖАРООПАСНОСТИ В ЛЕСАХ ПО МЕТЕОРОЛОГИЧЕСКИМ УСЛОВИЯМ

Оперативные прогностические подразделения Гидрометслужбы при расчетах фактического и прогностического классов пожарной опасности руководствуются "Методическими указаниями по прогнозированию пожарной опасности..." [29].

Для отдельного пункта вычисляется комплексный показатель Нестерова (КПО $_{\rm H}$) по утвержденной ГОСТОм [30] форме.

$$K\Pi O_{\scriptscriptstyle H} = \sum_{\scriptscriptstyle 1}^{\scriptscriptstyle n} T - T_{\scriptscriptstyle d} * T_{\scriptscriptstyle d}, \tag{12}$$

где T-температура воздуха, T_d -температура точки росы, n-число дней без осадков или с осадками меньше 3 мм.

Показатель Нестерова имеет множество модификаций [32-34]. Показано, что принятый показатель имеет связь с фактической горимостью лесов, определенной по спутниковым наблюдениям.

В [18] предложен расчет индекса Нестерова на базе накопленного дефицита упругости насыщения:

$$K\Pi O_{\scriptscriptstyle H}^{\scriptscriptstyle M} = \sum_{\scriptscriptstyle 1}^{\scriptscriptstyle n} E_{\scriptscriptstyle T} - E_{\scriptscriptstyle \tau} \ , \tag{13}$$

Количественные значения показателя переводятся в пять утвержденных классов (таблица 5) от очень малой степени пожаропасности (1 класс) до чрезвычайной (5 класс). Соответствующие градации перевода модифицированного показателя в принятые классы получены на опытных данных (таблица 6).

Таким образом, расчет степени пожароопасности в лесах по метеорологическим условиям включает:

- расчет прогнозов максимальной температуры воздуха;
- расчет прогнозов дефицита точки росы и дефицита упругости насыщения водяного пара;
- расчет прогнозов осадков;
- расчет показателей пожароопасности;
- определение степени пожароопасности в классах.
 К первому блоку добавлен расчет минимальной температуры воздуха.

Таблица 5 - Шкала пожарной опасности в лесу по показателю Нестерова с учетом поправок для Новосибирской области

	1	Классы	I	II	III	IV	V
Пер	риод пожароопасного сезо	она		Верхн	яя грані	ица КПС) _H
весенне- летний	от схода снежного покрон до 9 июня	за	150	700	2000	10000	>10000
летний	10 июня - 31 августа		550	2000	5500	10000	>10000
летне- осенний	1 сентября - до снежного покрова		200	800	1400	10000	>10000

Таблица 6 - Шкала пожарной опасности по показателю на базе дефицита упругости насыщения водяного пара с учетом поправок для Новосибирской области

	Классы	I	II	III	IV	V
Период пожароопасного с	езона		Bepx	няя грани	ща КПО н	1
весенне- от схода снежного пок летний до 9 июня	рова	7	25	55	200	> 200
летний 10 июня - 31 августа		9	45	65	220	> 220
летне- 1 сентября - осенний до снежного покрова	1	7	25	55	200	> 200

Показатель степени пожароопасности рассчитывается в переходный и теплый периоды года со времени схода снежного покрова в лесах. В остальное время года по разработанным методам рассчитываются прогнозы экстремальной температуры воздуха и осадков.

Полученная модель автоматизированных прогностических расчетов WSIBMZ представлена на рисунке 14.

К перечисленным выше блокам добавлены:

- 7. ввод исходной фактической информации со станций региона;
- 8. контроль и восстановление фактических данных;
- 9. ввод данных базовых гидродинамических моделей (UKMO и ECMF) в коде GRIB;
- 10. вывод результатов в табличный формат для оперативных синоптиков;
- 11. запись результатов в файлы для оценки;
- 12. передача результатов по каналам связи в ЦГМС региона;
- 13. представление результатов в ГИС «Погода в реальном времени»;
- 14. ежемесячный расчет оценок прогнозов.

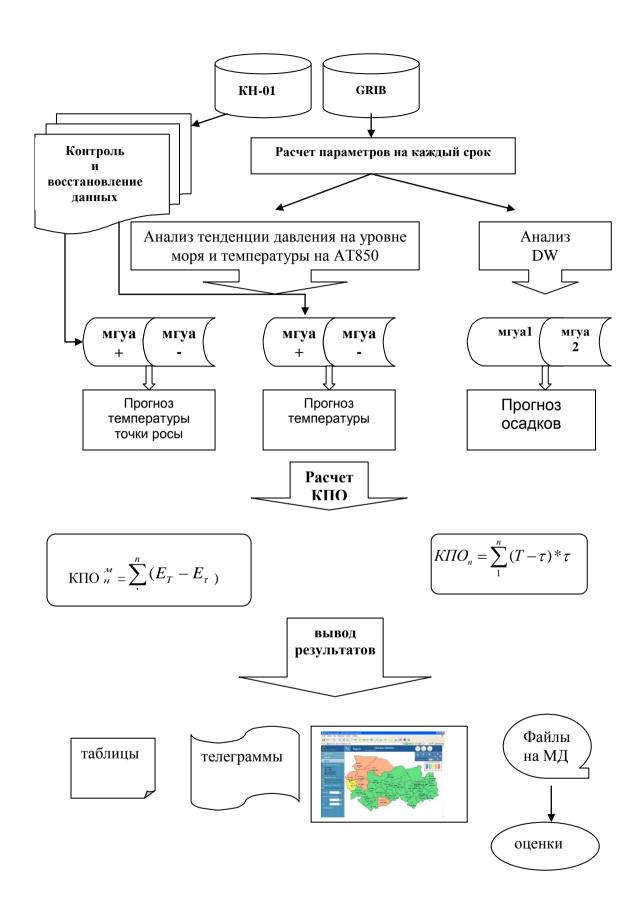


Рисунок 14 – Блок-схема модели WSIBMZ

6 РЕЗУЛЬТАТЫ АВТОРСКИХ ИСПЫТАНИЙ МЕТОДИЧЕСКИХ ПРОГНОЗОВ

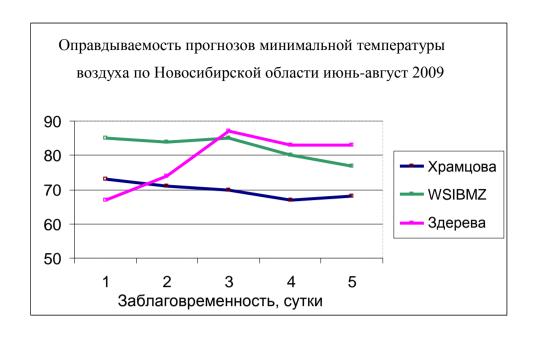
По разработанной модели WSIBMZ получены расчеты прогнозов минимальной и максимальной температур воздуха и осадков по станциям Ханты-Мансийского округа, Томской, Кемеровской и Новосибирской областям и Алтайскому краю для летнего и осеннего периодов 2009 года (всего по 140 станциям). Прогнозы составлены на 1-5 суток по ежедневным оперативным модельным гидродинамическим и фактическим исходным данным. Полученные оценки сравнены с оценками имеющихся в Новосибирском ЦГМС-РСМЦ автоматизированных методов прогнозов:

- технология РЭП (автор П.П.Васильев, ГМЦ РФ), расчет прогнозов экстремальной температуры и суточных сумм осадков по пунктам территории;
- метод прогноза температуры по отдельным пунктам и областям Западно-Сибирского региона (автор И.Г.Храмцова);
- метод прогноза температуры по станциям Новосибирской области (автор М.Я.Здерева);
- прогноз полусуточных осадков по пунктам территории на 24-36-48 часов по локальной гидродинамической модели РЕГИОН (автор В.М.Лосев, ГМЦ РФ) [35].

Комплекс расчетных оценок включает рекомендации для оперативных прогнозов [36] и для проведения испытаний методов [37].

Результаты:

- 1. В летне-осеннем периоде прогнозы максимальной температуры имеют более высокие оценки, чем минимальной (таблицы 7-8).
- 2. По сравнению со схемой РЭП: в июле и августе оценки высоки (90-100%) по обоим методам, в июне преимущество за московской схемой, хотя для отдельных пунктов (например, для Барнаула минимальная температура) и для отдельных сроков новые прогнозы лучше (таблица 8).
- 3. Прогнозы температуры по Новосибирской области по новой схеме имеют более высокое качество за весь сравниваемый период как по отношению к предыдущим сибирским разработкам схеме Храмцовой, так и детализированной схеме Здеревой (таблица 7, рисунок 15).
- 4. Сравнение прогнозов осадков на первую ночь и первый день (24 и 36 часов соответственно) показывает примерно одинаковые результаты с моделью Лосева в летнем


периоде (рисунок 16), такая же картина для ночных осадков в осенние месяцы, а для дневных прогнозы по новой схеме несколько лучше (таблица 9).

5. Прогноз суточных сумм осадков по WSIBMZ не уступает схеме РЭП, а на более удаленные сроки - превосходит (рисунок 17).

Итак, прогнозы по схеме WSIBMZ имеют более высокое качество по сравнению с существующими региональными методами и сравнимое качество с московскими разработками.

Таблица 7 – Оправдываемость прогнозов температуры по Новосибирской области

Метод			Тмин			Тмах				
	1	2	3	4	5	1	2	3	4	5
	СЕНТЯБРЬ 2009 года									
WSIBMZ	79	74	77	72	76	95	93	91	83	77
Здерева	64	74	66	60	55	84	82	75	73	70
Храмцова	59	62	60	58	57	58	54	50	52	55
			Ok	АЧАКТХ	2009 I	ода				
WSIBMZ	74	68	68	56	44	89	85	79	74	57
Здерева	72	69	45	44	35	76	62	47	44	37
Храмцова	51	52	48	46	40	67	62	61	61	46

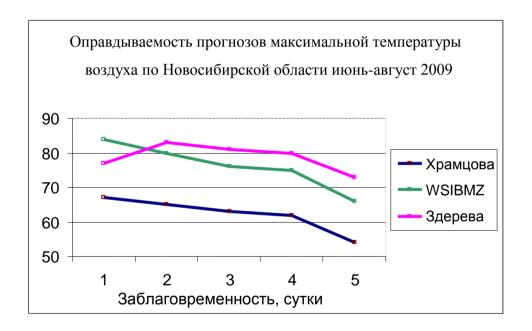
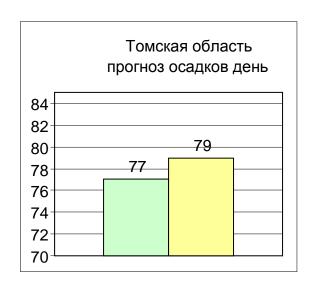
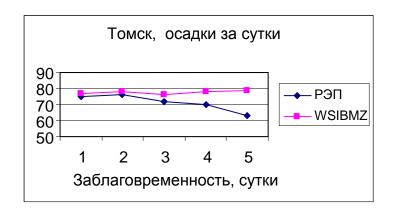


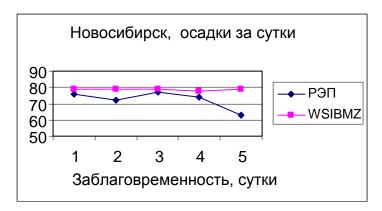
Рисунок 15

Таблица 8

	Опра	вдыва	аемос	гь про	THU30	в тем	перат	vnri			
		ыдыв(icivioc.		,1 11030	D ICM	nepar.	уры	Тъсст		
Пункт	Метод	1	2	Тмин	4	<i>E</i>	1	2	Тмах	A	
		1	2	3	4	5	1	2	3	4	5
	WSIBMZ	76	ин 76	онь 20 69	09 года 72	62	86	76	72	72	76
Томск	РЭП	100	90	90	87	83	90	90	87	83	87
	WSIBMZ	74	76	70	70	67	81	76	74	85	70
Кемерово	РЭП	83	73	77	77	87	90	93	77	63	77
	WSIBMZ	90	79	83	72	69	85	85	70	85	59
Новосибирск	РЭП	93	93	93	86	66	87	90	83	66	69
	WSIBMZ	85	81	78	63	59	86	76	72	69	66
Барнаул	РЭП	70	62	58	60	65	90	88	78	77	73
	1 311	70		юль 20			70	00	70	, ,	
T	WSIBMZ	80	75	80	68	56	96	100	100	84	60
Томск	РЭП	100	100	100	93	90	97	97	97	90	86
TC.	WSIBMZ	90	86	90	83	93	97	97	93	86	90
Кемерово	РЭП	100	93	97	93	90	100	100	97	90	93
Ш 7	WSIBMZ	90	86	90	83	93	97	97	93	86	90
Новосибирск	РЭП	100	93	97	93	90	100	100	97	90	93
Γ	WSIBMZ	93	97	97	100	97	87	90	87	67	70
Барнаул	РЭП	100	97	100	100	100	100	97	90	79	83
			ав	густ 20	09 год	a					
Torrow	WSIBMZ	90	90	90	87	90	90	83	90	87	83
Томск	РЭП	100	100	100	96	92	96	92	92	85	85
Varianana	WSIBMZ	97	90	93	90	90	90	90	90	97	87
Кемерово	РЭП	85	92	81	81	73	100	96	96	96	92
Новосибирск	WSIBMZ	100	100	97	100	100	93	90	93	87	80
Повосиоирск	РЭП	100	100	100	96	100	92	92	96	85	89
Барнаул	WSIBMZ	97	97	100	90	90	100	93	97	93	80
Барпаул	РЭП	100	100	92	85	89	96	100	100	92	85
	T			гябрь 2			1			,	
Томск	WSIBMZ	86	82	75	79	75	82	82	82	79	79
TOMOR	РЭП	83	78	77	70	65	87	78	73	62	58
Кемерово	WSIBMZ	76	64	76	64	48	100	100	92	80	76
	ПЕЧ	63	60	52	37	40	82	69	71	64	38
Новосибирск	WSIBMZ	88	72	72	60	44	92	92	84	80	60
	РЭП	90	87	79	64	63	81	81	82	79	68
Барнаул	WSIBMZ	64	60	64	52	40	84	68	80	76	52
1 /	РЭП	79	74	64	52	44	81	74	71	71	56
октябрь 2009года											
Томск	WSIBMZ	80	75	80	68	56	96	100	100	84	60
	РЭП	89	74	69	64	61	81	82	71	76	69
Кемерово	WSIBMZ	76	64	76 52	64	48	100	100	92	80	76
<u>-</u>	РЭП	63	72	52 72	37	40	82	69	71	64	38
Новосибирск	WSIBMZ PЭП	88	72		60	62	92	92	84	80 70	60
	WSIBMZ	90 64	87 60	79 64	64 52	63	81 84	81 68	82 80	79 76	68 52
Барнаул			60 74			40					52 56
	РЭП	79	74	64	52	44	81	74	71	71	56




Рисунок 16 – Оправдываемость прогнозов полусуточных сумм осадков в среднем за июньавгуст 2009 года


- □ WSIBMZ;
- □ Лосев.

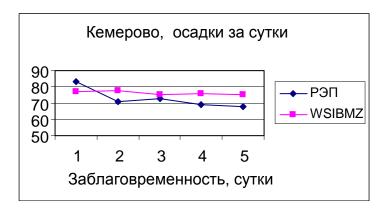

56

Таблица 9

	Оправдываемость прогнозов осадков									
Область	Метод		Ночь		День					
Областв	Wicioд	факт	количество	среднее	факт	количество	среднее			
СЕНТЯБРЬ 2009 года										
Томская	WSIBMZ	76	88	82	81	90	86			
Томская	Лосев	75	87	81	76	87	82			
НСО	WSIBMZ	79	89	84	79	90	85			
псо	Лосев	79	89	84	77	91	84			
Vanapaparag	WSIBMZ	78	89	84	82	91	86			
Кемеровская	Лосев	78	88	83	76	89	83			
Алтай	WSIBMZ	79	89	84	79	89	84			
Алтаи	Лосев	78	90	84	85	92	88			
			ОКТЯБРЬ 20	009 года						
Томская	WSIBMZ	77	88	83	79	89	84			
Томская	Лосев	73	88	81	73	89	81			
НСО	WSIBMZ	80	90	85	79	90	85			
псо	Лосев	75	93	84	67	86	77			
Vanapaparag	WSIBMZ	89	93	91	87	93	90			
Кемеровская	Лосев	80	90	85	76	89	83			
Алтай	WSIBMZ	79	89	84	78	88	83			
Алтаи	Лосев	81	91	86	71	88	80			

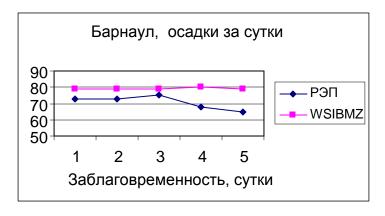


Рисунок 17 - Оправдываемость прогнозов суточных сумм осадков по схемам РЭП и WSIBMZ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Василенко В.А. Сплайн-функции: теория, алгоритмы, программы. Новосибирск: Наука,1983.-49с.
- 2. Храмцова И.Г., Шустова Г.А. Схема прогноза температуры воздуха у земли на пять суток для районов Сибири // Труды ЗапСибНИИ Госкомгидромета. М.: Гидрометиздат,1986. Вып. 79 С.10-22.
- 3. Храмцова И.Г., Шустова Г.А. Опыт использования в оперативных условиях модели прогноза экстремальной температуры на 1 6 суток // Труды ЗапСибНИГМИ. 1990. Вып. 93. С. 106 112.
- 4. Храмцова И.Г., Прокопьева И.П., Здерева М.Я., Шустова Г.А. Прогноз осадков на 1 5 дней по южной половине Урала и Сибири в холодное полугодие //Труды ЗапСибНИГМИ. 1989. Вып. 90. С. 3 12.
- 5. Храмцова И.Г. и др. Модель прогноза осадков на 1 5 дней в тёплое полугодие по территории Урала и Сибири // Труды СибНИГМИ, 1992, вып. 100, С. 167 178.
- 6. Храмцова И.Г., Шустова Г.А. Автоматизированный метод прогноза заморозков на 1 5 суток для юго-востока Западной Сибири // Труды СибНИГМИ. 2000. Вып. 102. С. 34 40
- 7. Токарев В.Г. Метод прогноза заморозков по дням пентады для юга Красноярского края // Труды СибНИГМИ. 2000.- Вып.103. С. 115 120.
- 8. Торубарова Г.П., Чадова М.М., Здерева М.Я. Результаты испытания автоматизированного метода прогноза сильного (25 м/с и более) ветра на 1-3 суток по территории Новосибирской области и Алтайского края в теплый период года. // Информационный сборник. 2006. №32 С.33-39.
- 9. Здерева М.Я., Носкова А.Д. Результаты испытания автоматизированного метода прогноза метелей разной категории по поусуткам пятидневки для территории Уральского УГМС. // Информационный сборник. 2006. №32 С.40-57.
- 10. Васильев П.П., Васильева Е.Л. Система статистической интерпретации выходной продукции гидродинамических моделей для среднесрочного прогноза погоды //70 лет Гидрометцентру России.- Спб: Гидрометиздат, 1999. С.118-133.
- 11. Васильев П.П., Васильева Е.Л., Веселова Г.К., Горлач И.А. Метод прогноза преобладающей минимальной максимальной температуры воздуха, детализированного по территории семи федеральных округов Росси и республики Беларусь. // Информационный сборник. 2009. №6. С.43-57.

- 12. Вербицкая Е.М. Среднесрочный прогноз элементов и явлений погоды для станций Дальневосточного региона России //Труды ДВНИГМИ. Спб.: Гидрометиздат, 2003. Вып.149 160с.
- 13. Вербицкая Е.М. О результатах испытания метода и автоматизированной технологии прогноза наличия и количества локальных осадков на пять суток с детализацией по дням для станций Амурской области и Хабаровского края //Информационный сборник .- 2000.- №26. С.31-43
- 14. Вербицкая Е.М., Панасенкова В.А., Хамуева М.М., Сиротенко М.В. Метод прогноза полусуточных сумм осадков в пункте на срок до пяти суток с детализацией по полусуткам.// Информационный сборник .- 2009.-№36.- С.58-83.
- 15. Вербицкая Е.М. Результаты испытаний методов и оперативной технологии прогноза экстремальных температур воздуха у поверхности Земли на срок до пяти суток с детализацией по дням на станциях Дальневосточного региона России. // Информационный сборник. 2006. №33. С.37-53.
- 16. Здерева М.Я., Торубарова Г.П., Шустова Г.А. Физико-статистическая схема прогноза экстремальной температуры воздуха по станциям Новосибирской области на 1-5 суток.// Труды СибНИГМИ. 2006. Вып. 105. -в печ.
- 17. Здерева М.Я., Токарев В.Г., Торубарова Г.П. О результатах испытания метода и технологии прогноза температуры воздуха по полусуткам пентады для административных районов Новосибирской области (Новосибирский ЦГМС-РСМЦ, СибНИГМИ). // Информационный сборник. 2006. №33. С.54-66.
- 18. Здерева М.Я., Виноградова М.В. Среднесрочный прогноз степени пожарной опасности в лесах по метеорологическим условиям.// Метеорология и гидрология.-2009.-№1.- С.16-26.
- 19. Здерева М.Я., Виноградова М.В. Среднесрочный прогноз степени пожарной опасности в лесах по метеорологическим условиям. // Информационный сборник. 2006. №35 C.149-165.
- 20. Себер Дж. Линейный регрессионный анализ. М.: Мир, 1980. -456 с.
- 21. Современные методы идентификации систем / под ред. Эйкхофа:Пер.с англ.-Мир, 1983.-397 с.
- 22. Ивахненко А.Г., Юрачковский Ю.П. Моделирование сложных систем по экспериментальным данным.- М.: "Радио и связь", 1987. -120с.
- 23. Ивахненко А.Г., Коппа Ю.В., Степашко В.С. и др. Справочник по типовым программам моделирования. Киев:Теника, 1980. 184с.

- 24. Храмцова И.Г. Учет аналогичности в прогностических схемах.// Труды ЗапСибНИИ Госкомгидромета. М.: Гидрометиздат. 1988. Вып.85. -С.3-8.
- 25. Лбов Г.С., Манохин А.Н. Распознавание образов при разнотипных признаках в условиях малой выборки.//Статистические проблемы управления.-Вильнюс, 1976.-Вып.14.-С.57-63.
- 26. Манохин А.Н. Алгоритм DW для распознавания образов: Пакет прикладных программ ОТЭКС.-Новосибирск:изд-во Новосибирского государственного университета, 1981.-С.3-30.
- 27. Хромов С.П., Мамонтова Л.И. Метеорологический словарь.- Л.: Гидрометеоиздат, 1974. 568 с.
- 28. Матвеев Л.Т. Основы общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1965. 876с.
- 29. Методические указания по прогнозированию пожарной опасности в лесах по условиям погоды" // Гидрометслужба, 1975 г. -15с.
- 30. ГОСТ Р 22.1.09-99. Группа Т58. Безопасность в чрезвычайных ситуациях. Мониторинг и прогнозирование лесных пожаров.
- 31. Нестеров В.Г. Пожарная охрана леса. -М., 1945. 176с.
- 32. Жданко В.А., Гриценко М.В. Метод анализа лесопожарных сезонов: Практические

рекомендации.- Л.:ЛНИИЛХ, 1980.

33. Шешуков М.А., Громыко С.А., Шведов А.Г. К оценке комплексного показателя ПО в лесу по условиям погоды // Мат. науч.-практич. конф. "Охрана лесов от пожаров в современных

условиях -ред.Шешуков М.А., Хабаровск, 27-29 марта 2002г. -С.122-126.

- 34. Сверлова Л.И. Усовершенствованный метод оценки состояния пожарной опасности в лесах по условиям погоды //Хабаровск 1998. 31с.
- 35. Лосев В.М. Гидродинамическая конечно-разностная модель регионального прогноза на ЭВМ CRAY.- Труды Гидрометцентра России. 2000. вып.334. С.69-90. .
- 36. РД 52.88.629 2002. Наставление по краткосрочным прогнозам погоды общего назначения.- СПб: Гидрометиздат,2002. 42с.
- 37. РД 52.27.284 -91 . Методические указания. Проведение производственных (оперативных) испытаний новых и усовершенствованных методов гидрометеорологических и гелиогеофизических прогнозов. Л.: Гидрометеоиздат, 1991. 149c.

ПРИЛОЖЕНИЕ А

Таблица А.1

		**		TC		аолица А.1
No	Знак	Индекс	Название станции	Координат	гы станции	Высота
		станции		широта	долгота	станции
001	#	23024	БЕЛЫЙ НОС	69,6	60,2	6
002	#	23029	УСТЬ-КАРА	69,3	65,0	4
003	#	23032	МАРРЕСАЛЯ	69,7	66,8	11
004	#	23058	АНТИПАЮТА	69,1	76,8	10
005	#	23074	ДУДИНКА	69,4	86,2	28
006	#	23078	НОРИЛЬСК	69,3	88,3	50
007	#	23174	ПОТАПОВО	68,7	86,3	43
008		23176	ИСТОК	68,4	89,3	84
009		23179	СНЕЖНОГОРСК	68,3	88,3	26
010		23226	ВОРКУТА	67,5	64,0	180
011		23242	НОВЫЙ ПОРТ	67,7	72,9	12
012		23256	ТАЗОВСКОЕ	67,5	78,7	8
013		23274	ИГАРКА	67,5	86,6	30
014		23330	САЛЕХАРД	66,5	66,5	35
015		23339	ПОЛУЙ	66,0	68,7	38
016		23345	НЫДА	66,6	73,0	10
017		23358	ЯГЕЛЬНОЕ	66,1	76,8	23
018		23363	СОВЕТСКАЯ РЕЧКА	66,8	83,8	50
019		23375	КУРЕЙКА	66,5	87,2	28
020		23426	МУЖИ	65,4	64,7	18
021		23431	ПИТЛЯР	65,8	66,0	16
022		23443	ПАНГОДА	65,8	74,5	51
023		23445	НАДЫМ	65,5	72,5	19
024		23463	ЯНОВ СТАН	66,0	84,3	40
025		23465	КРАСНОСЕЛЬКУП	65,7	82,4	20
026		23471	НИЖНЕВАРТОВСКИЙ	60,8	76,6	44
027		23472	ТУРУХАНСК	65,8	87,9	32
028	#	23484	БОЛЬШОЙ ПОРОГ	65,6	90,0	0
029	#	23499	ТЕМБЕНЧИ	64,9	98,9	0
030		23527	САРАН-ПАУЛЬ	64,3	60,9	0
031		23552	ТАРКО-САЛЕ	64,9	77,8	27
032		23578	ВЕРЕЩАГИНО	64,2	87,5	32
033	#	23589	ТУТОНЧАНЫ	64,2	93,8	102
034		23625	СОСЬВА	63,6	62,0	27
035		23629	ИГРИМ	63,2	64,5	28
036		23631	БЕРЕЗОВО	63,9	65,0	27
037		23632	КАЗЫМ	64,7	67,2	27
038		23635	ЮИЛЬСК	63,7	69,6	86
039		23656	ХАЛЕСОВАЯ	63,4	78,3	66
040		23662	ТОЛЬКА	64,0	82,1	33
041	#	23678	ВЕРХНЕ-ИМБАТСКОЕ	63,1	87,9	40
042		23724	НЯКСИМВОЛЬ	62,4	60,9	50
043		23734	ОКТЯБРЬСКОЕ	62,4	66,0	38
044		23741	НИЖНЕСОРТЫМСК	62,8	71,7	86
045		23748	КОГАЛЫМ	62,2	74,5	58
046		23758	РАДУЖНЫЙ	62,1	77,3	58
047		23774	КЕЛЛОГ	62,5	86,3	59
048		23776	БАХТА	62,5	89,0	43
0-70		23110	DIMITI	02,3	07,0	73

Продолжение таблицы А.1

		TT		T.C		Ъ
$N_{\underline{0}}$	Знак	Индекс станции	Название станции	-	гы станции	Высота станции
2.12		,		широта	долгота	
049		23788	КУЗЬМОВКА	62, 2	92, 1	62
050		23789	ПОЛИГУС	62, 0	94, 6	140
051		23823	ВОНЬЕГАН	61, 7	64, 3	0
052		23847	СЫТОМИНО	61, 3	71, 2	33
053		23848	НЕФТЕЮГАНСК	61, 0	72, 4	0
054		23849	СУРГУТ	61, 2	73, 5	0
055		23862	КОРЛИКИ	61, 8	82, 2	90
056		23867	ЛАРЬЯК	61, 3	80, 0	56
057		23884	ПОДК ТУНГУСКА	61, 6	90, 0	63
058		23891	БАЙКИТ	61, 7	96, 4	179
059	#	23921	ИВДЕЛЬ	60, 7	60, 4	101
060		23929	ШАИМ	60, 3	64, 2	51
061		23933	ХАНТЫ-МАНСИЙСК	61, 0	69, 1	40
062		23939	АЛТАЙ	60, 3	70, 0	30
063		23946	УГУТ	60, 5	74, 0	48
064		23953	ВАХОВСК	61, 0	78, 8	0
065		23955	АЛЕКСАНДРОВСКОЕ	60, 4	77, 9	60
066		23966	ВАНЖИЛЬ-КЫНАК	60, 3	84, 1	110
067		23973	ВОРОГОВО	61, 0	89, 8	46
068		23975	СЫМ-ФАКТОРИЯ	60, 3	88, 4	85
069		23982	ВЕЛЬМО	61, 0	93, 4	122
070		23986	СЕВЕРО-ЕНИСЕЙСК	60, 4	93, 0	510
070		23987	ЯРЦЕВО	60, 3	90, 2	58
071		23992	УСТЬ-КАМО	60, 7	97, 5	176
072	#	28044	CEPOB	59, 6	60, 5	132
073	#	28044	ГАРИ	59, 6		74
	#	28049	ЛЕУШИ		62, 3	74 72
075				59, 6	65, 8	
076		28066	КОНДИНСКОЕ	59, 6	67, 4	42
077		28076	ДЕМЬЯНСКОЕ	59, 6	69, 3	57
078	,,	28097	TAYPOBO	59, 5	73, 3	80
079	#	28144	ВЕРХОТУРЬЕ	58, 9	60, 8	126
080		28158	ТАБОРЫ	58, 5	64, 5	63
081		28165	КУМИНСКАЯ	58, 8	66, 0	82
082		28172	УВАТ	59, 2	68, 9	41
083	#	28240	НИЖНИЙ_ТАГИЛ_3	57, 9	60, 1	258
084	#	28248	АЛАПАЕВСК	57, 9	61, 7	128
085		28255	ТУРИНСК	58, 0	63, 7	71
086		28264	ТАВДА	58, 0	65, 3	62
087		28275	ТОБОЛЬСК	58, 1	68, 2	44
088		28278	ВАГАЙСКОЕ	57, 9	69, 0	55
089		28366	ЯРКОВО	57, 4	67, 1	52
090		28367	ТЮМЕНЬ	57, 1	65, 5	104
091		28382	УСТЬ-ИШИМ	57, 7	71, 2	56
092		28383	ТЕВРИЗ	57, 5	72, 4	66
093	#	28440	ЕКАТЕРИНБУРГ-У	56, 8	60, 6	237
094	#	28445	ЕКАТЕРИНБУРГ	56, 7	61, 1	290
095	#	28449	КАМЕНСК-УРАЛЬСКИЙ	56, 4	61, 9	168
096		28451	КАМЫШЛОВ	56, 8	62, 7	113
097		28456	ШАТРОВО	56, 5	64, 7	113
098		28465	ЯЛУТОРОВСК	56, 7	66, 3	60
099		28478	ГОЛЫШМАНОВО	56, 4	68, 4	124

Продолжение таблицы А.1

	1				одолжение та	
№	Знак	Индекс	Название станции	Координат	гы станции	Высота
"	Jiiak	станции	тазвание станции	широта	долгота	станции
100		28481	ВИКУЛОВО	56,8	70,6	70
101		28491	БОЛЬШИЕ УКИ	56,9	72,7	87
102		28493	TAPA	56,9	74,4	74
103	#	28541	УФАЛЕЙ	56,1	60,3	382
104		28552	ШАДРИНСК	56,1	63,6	81
105		28573	ишим	56,1	69,4	83
106		28581	АБАТСКИЙ	56,3	70,4	78
107		28586	ТЮКАЛИНСК	55,9	72,2	120
108		28587	СЛАДКОВО	55,5	70,3	120
109		28588	НАЗЫВАЕВСК	55,6	71,4	129
110		28593	БОЛЬШЕРЕЧЬЕ	56,1	74,6	78
111		28598	ПОСЕЛКОВО-С	55,6	73,5	87
112	#	28642	ЧЕЛЯБИНСК — ТОСЕЗТКОВО С	55,3	61,5	227
113	#	28645	КАЛАЧЕВО	54,9	61,5	0
114	"	28655	ШУМИХА	55,2	63,3	176
115		28661	КУРГАН	55,5	65,4	79
116		28666	МАКУШИНО	55,3	67,3	143
117		28679	ПЕТРОПАВЛОВСК	54,8	69,1	136
117		28688	ИСИЛЬКУЛЬ	54,8		128
118		28696	ИСИЛЬКУЛЬ КАЛАЧИНСК		71,3	107
				55,0	74,6	
120	ш	28698	OMCK	54,9	73,4	94
121	#	28748	ТРОИЦК	54,1	61,6	180
122		28756	ЗВЕРИНОГОЛОВСКОЕ	54,5	64,9	117
123		28764	ПРЕСНОГОРЬКОВКА	54,5	65,8	161
124		28766	БЛАГОВЕЩЕНСКОЕ	54,4	67,0	153
125		28775	ЯВЛЕНКА	54,3	68,4	115
126		28785	ВОЗВЫШЕНСКИЙ	54,4	70,9	127
127		28786	ПОЛТАВКА	54,4	71,8	124
128		28791	БОРИСОВСКИЙ	54,6	72,6	109
129		28797	ОДЕССКОЕ	54,2	73,0	125
130		28798	ПАВЛОГРАДКА	54,2	73,6	0
131		28799	ЧЕРЛАК	54,2	74,8	115
132	#	28843	КОМСОМОЛЕЦ	53,8	62,1	187
133		28867	УРИЦК	53,3	65,5	210
134		28873	КРАСНОАРМЕЙСК	53,8	69,8	153
135		28877	ВОЛОДАРСКОЕ	53,3	68,1	319
136		28879	КОКЧЕТАВ	53,3	69,3	229
137		28886	КЗЫЛ-ТУ	53,6	72,4	0
138		28895	РУССКАЯ_ПОЛЯНА	53,8	74,0	125
139	#	28941	КАРТАЛЫ	53,0	60,7	300
140	^	28952	КУСТАНАЙ	53,2	63,6	171
141		28957	ТОБОЛ	52,7	62,6	208
142		28966	РУЗАЕВКА	52,8	67,0	227
143		28978	БАЛКАШИНО	52,5	68,8	399
144		28984	ЩУЧИНСК	52,9	70,2	384
145		28993	ГОЛУБОВКА	53,1	74,2	126
146		29016	ПРОХОРКИНО	59,5	79,5	75
147		29023	НАПАС	59,9	82,0	76
148		29037	БЕРЕЗОВКА	59,3	82,6	83
149		29059	АЛЕКСАНДРОВСКИЙ	59,4	89,3	97
150		29068	НАЗИМОВО	59,5	91,0	64

Продолжение таблицы А.1

№	Знак	Индекс	Название станции	Координат	гы станции	Высота
71⊻	Энак	станции	пазвание станции	широта	долгота	станции
151		29111	СРЕДНИЙ ВАСЮГАН	59,2	78,2	69
152		29122	КАРГАСОК	59,0	80,9	63
153		29128	ПАРАБЕЛЬ	58,7	81,5	63
154		29149	СТЕПАНОВКА	58,7	86,8	105
155		29154	УСТЬ-ОЗЕРНОЕ	58,9	87,8	114
156		29203	НОВЫЙ ВАСЮГАН	58,5	76,5	81
157		29209	МАЙСК	57,8	77,3	100
158		29224	СТАРИЦА	58,2	80,6	80
159		29231	КОЛПАШЕВО	58,3	82,9	76
160		29237	ПОДГОРНОЕ	57,8	82,7	0
161		29247	БАТУРИНО	57,8	85,1	90
162		29253	ЛОСИНОБОРСК	58,4	89,4	142
163		29263	ЕНИСЕЙСК	58,4	92,1	78
164		29274	СТРЕЛКА	58,1	93,0	89
165		29276	МОТЫГИНО	58,2	94,7	166
166		29282	БОГУЧАНЫ	58,4	97,4	134
167		29313	ПУДИНО	57,5	79,4	93
168		29328	БАКЧАР	57,1	81,9	107
169		29332	МОЛЧАНОВО	57,6	83,8	114
170		29348	ПЕРВОМАЙСКОЕ	57,0	86,2	115
171		29355	ТЕГУЛЬДЕТ	57,3	88,1	135
172		29363	ПИРОВСКОЕ	57,6	92,3	184
173		29367	БИРИЛЮССЫ	57,0	90,5	169
174		29374	КАЗАЧИНСКОЕ	57,8	93,2	176
175		29379	TACEEBO	57,4	94,8	147
176	#	29393	ЧЕРВЯНКА	57,6	99,5	221
177	π	29401	СЕДЕЛЬНИКОВО	57,0	75,3	90
178		29405	КЫШТОВКА	56,6	75,5 76,6	90
179		29418	СЕВЕРНОЕ	56,3	78,3	114
180		29430	TOMCK	56,4	85,0	121
181		29456	THOXTET	56,5	89,3	205
182		29464	БОЛЬШОЙ УЛУЙ	56,6	90,5	196
183		29467	АЧИНСК	56,3	90,5	266
184		29471	БОЛЬШАЯ МУРТА	56,9	93,1	154
185		29477	СУХОБУЗИМСКОЕ	56,5	93,3	159
186		29481	ДЗЕРЖИНСКОЕ	56,8	95,2	188
187		29485	АБАН	56,7	96,0	244
188		29500	УСТЬ-ТАРКА	55,6	75,7	101
189		29508	ВЕНГЕРОВО	55,7	75,7 76,8	0
190		29524	КРЕЩЕНКА	55,8	80,0	130
191		295324	КОЖЕВНИКОВО	56,3	84,0	91
191		29536	ЮРГА	55,7	84,8	181
193		29539	БОЛОТНОЕ	55,7	84,4	201
193		29540	ЯЯ	56,2	86,5	139
194		29541	ТАЙГА	56,1	85,6	250
196	^	29548	БАРЗАС	55,7	86,3	2087
190		29548	МАРИИНСК	56,2	80,3 87,8	134
198		29552	ТЯЖИН	56,1	88,5	221
198		29553	БОГОТОЛ	56,2	89,6	291
200		29557	ТИСУЛЬ	55,8	88,3	189
200		<u> </u>	11103310	33,0	00,5	10)

65

Продолжение таблицы А.1

№	2 _{vvov}	Индекс	Поррамия отручими	Координа	гы станции	Высота
145	Знак	станции	Название станции	широта	долгота	станции
201		29558	ШАРЫПОВО	55,5	89,2	318
202		29561	НАЗАРОВО	56,0	90,3	256
203		29562	КЕМЧУГ	56,1	91,7	330
204		29563	КАЧА	56,1	92,2	468
205		29566	ДИВНОГОРСКАЯ ГМО	55,9	92,3	274
206		29570	КРАСНОЯРСК-ОПЫТНЫЙ	56,0	92,8	275
207		29576	УЯР	55,8	94,3	343
208		29578	ШАЛО	55,7	93,8	399
209		29581	KAHCK	56,2	95,7	204
210		29587	ИРБЕЙСКОЕ	55,6	95,5	251
211	#	29594	ТАЙШЕТ	55,9	98,0	302
212		29602	ЧАНЫ	55,3	76,8	113
213		29605	ТАТАРСК	55,2	76,0	112
214		29612	БАРАБИНСК	55,4	78,4	120
215		29613	УБИНСКОЕ	55,3	79,6	138
216		29614	КВАШНИНО	55,0	77,9	113
217		29624	КАРГАТ	55,2	80,3	135
218		29625	ЧУЛЫМ	55,1	81,0	139
219		29626	КОЧЕНЕВО	55,0	82,2	160
220		29630	ТОЛМАЧЕВО-АМЦ	55,0	82,7	109
221		29631	КОЛЫВАНЬ	55,3	82,8	140
222		29632	МОШКОВО	55,3	83,6	215
223		29634	НОВОСИБИРСК	55,1	82,9	162
224		29635	ОБСКАЯ ГМО	54,8	82,9	123
225		29636	ТОГУЧИН	55,2	84,4	148
226		29637	УЧЕБНАЯ ГМС	55,0	82,9	109
227		29638	ОГУРЦОВО	54,9	83,0	133
228		29641	топки	55,3	85,6	281
229		29642	КЕМЕРОВО-АМСГ	55,4	86,1	154
230		29644	ПРОМЫШЛЕННАЯ	54,9	85,7	170
231		29645	KEMEPOBO	55,3	86,2	128
232		29649	КРАПИВИНО	55,0	86,8	153
233		29653	УЖУР	55,3	89,8	383
234		29654	ЦЕНТРАЛЬНЫЙ РУДНИК	55,2	87,6	494
235		29662	БАЛАХТА	55,4	91,6	303
236		29664	СВЕТЛОЛОБОВО	55,1	90,8	325
237		29675	КОЛБА	55,1	93,3	477
238		29676	АГИНСКОЕ	55,3	94,9	336
239	#	29698	НИЖНЕУДИНСК	54,9	99,0	410
240		29701	ЛЮБИМОВКА	54,7	75,1	111
241		29702	ЧИСТООЗЕРНОЕ	54,7	76,6	111
242		29706	КУПИНО	54,4	77,3	116
243		29708	БАГАН	54,1	77,7	110
244		29712	здвинск	54,7	78,7	112
245		29716	ДОВОЛЬНОЕ	54,5	79,7	148
246		29722	УЖАНИХА	54,7	81,1	181
247		29723	О. ДАЛЬНИЙ	54,5	82,3	118
248		29724	кочки	54,3	80,5	158
249		29726	ОРДЫНСКОЕ	54,4	81,9	108
250		29730	ИСКИТИМ	54,6	83,3	134

Продолжение таблицы А.1

		**		1	Вухосто		
№	Знак	Индекс станции	Название станции	1	гы станции	Высота станции	
271			TO GERMAN	широта	долгота	·	
251		29735	ПОСЕВНАЯ	54,3	83,4	294	
252		29736	МАСЛЯНИНО	54,3	84,2	198	
253		29741	KPACHOE	54,6	85,4	200	
254		29745	БЕЛОВО	54,3	85,9	225	
255		29749	КИСЕЛЕВСК	54,0	86,6	287	
256		29752	НЕНАСТНАЯ	54,8	88,8	1178	
257		29756	ШИРА	54,5	89,9	468	
258		29759	КОММУНАР	54,3	89,3	846	
259		29761	РАЗЛИВ	54,7	90,9	278	
260		29766	ИДРИНСКОЕ	54,4	92,1	281	
261		29768	ЛЕБЯЖЬЕ	54,2	91,6	0	
262		29771	ЩЕТИНКИНО	54,5	93,3	0	
263		29772	АРТЕМОВСК	54,5	93,4	481	
264		29789	ВЕРХНЯЯ ГУТАРА	54,2	97,0	984	
265	#	29794	НЕРОЙ	54,5	97,8	798	
266		29802	МИХАЙЛОВКА	53,8	76,5	114	
267		29807	ИРТЫШСК	53,3	75,4	94	
268		29808	ФЕДОРОВСКАЯ	53,4	76,3	112	
269		29813	КРАСНООЗЕРСК	54,0	79,2	143	
270		29814	КАРАСУК	53,7	78,1	113	
271		29816	ХАБАРЫ	53,6	79,5	138	
272		29822	КАМЕНЬ-НА-ОБИ	53,8	81,3	146	
273		29823	СУЗУН	53,8	82,3	143	
274		29827	БАЕВО	53,3	80,8	123	
275		29832	ТАЛЬМЕНКА	53,8	83,9	142	
276		29836	ЗАРИНСК	53,8	84,9	201	
277		29837	ШЕЛАБОЛИХА	53,4	82,6	170	
278		29838	БАРНАУЛ АМСГ	53,4	83,7	196	
279		29836 29846				0	
			НОВОКУЗНЕЦК АМСГ	53,7	87,2		
280		29848	ТОГУЛ	53,5	85,9	270	
281		29849	КУЗЕДЕЕВО	53,3	87,2	291	
282		29854	МЕЖДУРЕЧЕНСК	53,7	88,1	242	
283		29858	НЕОЖИДАННЫЙ П.	53,3	89,1	528	
284		29862	ХАКАССКАЯ	53,8	92,3	0	
285		29864	УЙБАТ	53,7	90,4	525	
286		29866	МИНУСИНСК	53,7	91,7	251	
287		29869	ЕРМАКОВСКОЕ	53,3	92,4	301	
288		29870	КУРАГИНО	53,9	92,7	285	
289		29874	КАРАТУЗСКОЕ	53,6	92,8	315	
290		29876	ПОНОМАРЕВО	53,7	94,2	445	
291	#	29892	ХАДАМА	53,9	98,8	704	
292	#	29894	АЛЫГДЖЕР	53,6	98,2	918	
293		29915	СЛАВГОРОД	53,0	78,6	125	
294		29916	БЛАГОВЕЩЕНКА	52,8	79,8	126	
295		29923	РЕБРИХА	53,1	82,3	214	
296		29928	МАМОНТОВО	52,7	81,6	210	
297		29936	ТРОИЦКОЕ	53,0	84,7	227	
298		29937	АЛЕЙСКАЯ	52,5	82,8	174	
299		29939	БИЙСК-ЗОНАЛЬНАЯ	52,7	84,9	224	

Продолжение таблицы А.1

№	Знак Индекс		Название станции	Координат	Высота	
312	Jilak	станции		широта	долгота	станции
300		29941	ЦЕЛИННОЕ	53,1	85,8	270
301		29946	КОНДОМА	52,8	87,3	354
302		29947	БИЙСК АМСГ	52,5	85,4	190
303		29954	ТАШТАГОЛ	52,8	87,8	400
304		29955	УСТЬ-КАБЫРЗА	52,8	88,4	411
305	#	29956	ТАШТЫП	52,8	99,9	455
306		29961	АСКИЗ	53,1	90,5	366
307		29962	БЕЯ	53,0	90,9	448
308		29963	ЧЕРЕМУШКИ	53,0	91,5	331
309	^	29974	ОЛЕНЬЯ РЕЧКА	52,8	93,2	1402
310	#	35041	БРЕДЫ	52,4	60,3	310
311	#	35042	ДЖЕТЫГАРА	52,2	61,2	0
312		35053	КУШМУРУН	52,4	64,6	110
313		35067	ЕСИЛЬ	51,9	66,3	222
314		35069	ЖАКСЫ	51,9	67,3	0
315		35078	АТБАСАР	51,8	68,4	308
316		35085	АЛЕКСЕЕВСКОЕ	52,0	70,9	384
317	#	35157	БЕС-ТАУ	51,1	62,9	0
318		35173	ДЖАЛТЫР	51,6	69,8	312
319	#	35188	ЦЕЛИНОГРАД	51,1	71,4	348
320		35191	ЕРМЕНТАУ	51,6	73,1	397
321	#	35244	КОМСОМОЛЬСКОЕ	50,4	60,5	0
322	#	35361	АМАНГЕЛЬДЫ	50,1	65,2	142
323	#	35363	АРКАЛЫК	50,2	66,9	343
324	#	35376	БЕРЛИК	49,9	69,5	350
325	#	35393	КОРНЕЕВКА	50,2	74,3	0
326	#	35394	КАРАГАНДА	49,8	73,1	555
327		36001	ЭКИБАСТУЗ	51,8	75,4	197
328		36003	ПАВЛОДАР	52,3	76,9	146
329		36015	ШАЛДАЙ	51,9	78,8	162
330		36020	РОДИНО	52,5	80,2	168
331		36021	КЛЮЧИ	52,3	79,1	143
332		36022	ВОЛЧИХА	52,0	80,4	208
333		36024	КУЛУНДА	52,5	78,9	138
334		36028	УГЛОВСКОЕ	51,4	80,2	199
335		36032	ПОСПЕЛИХА	52,0	81,5	0
336		36033	ШИПУНОВО	52,2	82,3	193
337		36034	РУБЦОВСК	51,5	81,2	215
338		36036	КРАСНОЩЕКОВО	51,6	82,7	250
339	#	36037	ГОРНЯК	51,0	81,4	278
340		36038	ЗМЕИНОГОРСК	51,1	82,2	385
341		36041	УСТЬ-ЧАРЫШСКОЕ	52,4	83,7	210
342		36044	УСТЬ-КАЛМАНКА	52,1	83,4	155
343		36045	СОЛОНЕШНОЕ	51,7	84,3	409
344		36047	ЧАРЫШСКОЕ	51,4	83,6	429
345		36052	ГОРНО-АЛТАЙСК	52,0	86,0	258
346		36055	КЫЗЫЛ-ОЗЕК	51,9	86,0	331
347		36057	ШЕБАЛИНО	51,3	85,7	0

Продолжение таблицы А.1

No	Знак	Индекс	Название станции	Координат	Высота	
31-	станции		широта	долгота	станции	
348		36058	ЧЕМАЛ	51,4	86,0	420
349		36061	ТУРОЧАК	52,3	87,2	322
350		36064	ЯЙЛЮ	51,8	87,6	479
351		36074	БОЛЬШОЙ ОН	52,1	89,8	0
352	#	36078	ТАЛИ	51,0	90,2	983
353		36083	УСТЬ-УСА	52,1	92,3	464
354	#	36087	ЧАДАН	51,4	91,4	724
355	#	36090	ХОВУ-АКСЫ	51,1	93,8	1043
356		36091	НИЖНЕ-УСИНСКОЕ	52,3	93,0	662
357		36092	ТУРАН	52,1	93,9	862
358		36096	КЫЗЫЛСКАЯ	51,7	94,5	628
359	#	36099	СОСНОВКА	51,1	94,5	927
360		36103	TOPA-XEM	52,5	96,1	920
361		36104	САРЫГ-СЕП	51,5	95,6	706
362	#	36126	БАЯН-АУЛ	50,8	75,7	494
363	#	36152	СЕМИЯРКА	50,9	78,3	148
364	#	36177	СЕМИПАЛАТИНСК	50,3	80,3	206
365	#	36186	ШЕМОНАИХА	50,6	81,9	320
366	#	36208	ЛЕНИНОГОРСК	50,3	83,5	809
367		36213	УСТЬ-КАН	50,9	84,8	1037
368		36229	УСТЬ-КОКСА	50,3	85,6	978
369		36231	ОНГУДАЙ	50,8	86,1	833
370		36237	КАТАНДА	50,2	86,2	900
371	^	36259	КОШ-АГАЧ	50,0	88,7	1757
372	#	36307	ЭРЗИН	50,3	95,1	1101
373	#	36403	УСТЬ-КАМЕНОГОРСК	50,0	82,5	291
374	٨	36442	КАРА-ТЮРЕК	50,0	86,4	2600

Примечания

¹ Выбраны 374 станции по территории (из них 314 основных), по которым есть полные данные.

² Знаком «#» помечены дополнительные 55 станций, расположенные по периметру рассматриваемой территории. 3 Знаком «^» помечены горные станции.

ПРИЛОЖЕНИЕ В

Таблица В.1 - Средняя месячная температура воздуха (°С) за период 01.2000 - 03.2008 гг. на территории Томской, Кемеровской, Новосибирской областей и Алтайского края

№	Индекс	Название	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Tor	мская с	станции область												
			20.0	17.4	0.4	2.2	0.0	162	17.6	142	0.1	0.2	10.0	10.7
48 49	23955	АЛЕКСАНДРОВСКОЕ			-8,4	-2,3	8,2	16,3	17,6	14,3	8,1		-	-18,7
	23966	ВАНЖИЛЬ-КЫНАК		-18,2	-8,9	-2,5	7,2	16,1	17,0		7,4			-20,7
115	29016 29023	ПРОХОРКИНО		-16,5	-7,3	-1,3	9,0	16,6	17,7	14,6	8,5	-0,1		-18,3
116	29023	НАПАС		-17,2 -17,2	-8,3	-1,9	8,4	16,8	17,6	14,2	8,1		-	-19,4
117	29037	БЕРЕЗОВКА	-		-8,3	-1,7	8,5	16,7	17,5 17,8	14,1	8,2			-19,6
120 121	29111	СРЕДНИЙ ВАСЮГАН		-15,7	-6,5	-0,4	9,8	16,9	′	14,7 14,8	8,8	0,5		-17,4 -18,3
121	29122	КАРГАСОК			-7,5	-1,2	9,5	17,1	17,9		9,0	0,3 $0,2$		-
123	29128	ПАРАБЕЛЬ		-16,1 -15,9	-7,3	-0,9	9,7	16,9	17,6	14,5	8,8			-18,1
123	29149	СТЕПАНОВКА	-	-15,9	-7,3 -7,3	-1,0 -0,8	9,5 9,2	17,2 17,3	17,9 18,2	14,5 14,7	8,4 8,3	-0,7	-	-18,4 -18,8
124	29203	УСТЬ-ОЗЕРНОЕ		-15,4	-7,3 -6,2	0,2	10,2	16,6	17,3	14,7	8,9	0,8		-16,7
123	29203	НОВЫЙ ВАСЮГАН			-6,2 -6,0	0,2		16,7	17,3	14,5	8,8	0,8		
120	29209	МАЙСК		-15,0 -15,7	-6,6	0,8	11,0		17,1	14,3	8,8			-16,6
128	29224	СТАРИЦА	-	-15,7	-6,8	-0,3	10,2 10,2	16,6 17,2	17,3 17,9	14,4	9,2	0,3 0,4		-17,8 -17,5
129	29231	КОЛПАШЕВО		-14,5	-6,0	0,5	10,2	17,2	17,9	15,0	9,2	0,4		-16,6
130		ПОДГОРНОЕ		-14,5	-6,0 -6,1	0,5	11,0	17,1	18,3	15,4	9,0	0,8		-16,9
136		БАТУРИНО		-14,3	-6,1 -6,5	0,5	10,9	17,4	17,5	14,8		0,0		-10,9
137	29313	ПУДИНО		-13,2	-6,3 -6,4	0,0	10,9	16,9	17,3	15,1	9,1 9,6	1,1		-16,3
138	29328	БАКЧАР		-14,7	-5,8	0,9	11,4	17,6	18,3	15,5	9,8	0,9		-16,3
139	29332	МОЛЧАНОВО		-14,2	-5,8 -5,7	1,3	11,4	17,8	18,8	15,9	9,8	1,0		-15,9
140	29355	ПЕРВОМАЙСКОЕ		-14,6	-5,7 -6,4	0,3	10,6	16,9	17,9	14,7	9,0	0,3		-17,0
148	29430	ТЕГУЛЬДЕТ ТОМСК		-13,7	-5,8	1,2	11,5	17,3	18,1	15,6	9,0	1,3		-17,0
159	29532			-13,7	-5,3	1,5	12,0	17,5	18,2	15,8	10,2	1,9		-14,8
		кожевниково	-17,7	-13,3	-5,5	1,5	12,0	17,5	10,2	13,6	10,2	1,5	-0,1	-14,0
	•	кая область	10.0	140		1.0	10.0	15.5	10.0	150	10.1	1.5		15.4
160		ЮРГА		-14,2	-6,5	1,2	12,2	17,7	18,2		10,1	1,7		-15,4
162	29540	яя		-13,3	-5,7	1,5	11,8	17,4	18,2	15,6	9,7	1,3		-15,3
163	29541	ТАЙГА		-13,8	-6,4	0,5	10,9	16,4	17,4	15,0	9,0	0,7		-15,4
164	29548	БАРЗАС		-13,0	-5,7	1,3	11,6	17,1	18,0	15,7	9,7	1,4		-14,6
165	29551	МАРИИНСК		-12,6	-5,2	2,0	12,0	17,6	18,4	16,0	10,1	1,7		-14,6
166		ТЯЖИН		-12,6				17,1	,	-	9,8	1,4	-6,2	-14,4
167		ТИСУЛЬ		-12,7	-5,6	1,1	11,1		17,8		9,6	1,0		-14,6
195		ТОПКИ		-13,0	-5,5	1,5	12,1	17,3			9,9	1,6		-14,4
196		КЕМЕРОВО АМСГ		-13,0	-5,8	1,4			18,4		10,2	1,8		-14,5
197		ПРОМЫШЛЕННАЯ		-12,9	-5,3	2,6			18,8		10,8	2,4		-14,3
198		КЕМЕРОВО		-13,2	-5,8	1,7	12,5		18,6		10,4	2,1		-14,8
199		КРАПИВИНО		-12,8	-5,4	2,0	12,1	17,4	-		10,5	2,4		-14,7
201		ЦЕНТР РУДНИК		-11,9	-5,5	0,4	9,5	15,6			8,9	0,6		-12,7
219	29741	КРАСНОЕ		-13,2	-5,7	2,5	12,3	17,6	18,4		10,4	2,2		-14,8
220	29745	БЕЛОВО		-12,0	-4,7	2,9	12,8	17,9	18,7	16,7	10,9	2,7		-13,3
221	29749	КИСЕЛЕВСК		-11,6	-4,1	3,3	12,9	17,8	18,8		11,0	2,8		-13,4
244		НОВОКУЗНЕЦК АМСГ		-11,7	-4,4	2,9	12,6	17,3	18,5		10,6	2,5		-13,5
246		КУЗЕДЕЕВО		-11,6	-3,9	2,8	12,0				10,5	2,9		-13,8
247		МЕЖДУРЕЧЕНСК		-13,1	-5,4	1,8	10,9	16,7	18,2	16,0	9,5	1,5		-15,5
264		КОНДОМА		-12,5	-4,8	2,1	11,5	16,6			9,5	1,7		-14,7
266		ТАШТАГОЛ		-12,8	-5,4	1,8			18,1	15,9	9,5	1,3		-15,1
267	29955	УСТЬ-КАБЫРЗА	-19,2	-13,9	-5,5	2,1	10,7	10,4	18,1	15,6	9,3	1,5	-0,/	-16,9

Продолжение таблицы В.1

№	Индекс	Название станции	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Ho	Новосибирская область													
146	29405	КЫШТОВКА	-18,4	-15,1	-6,5	1,5	12,1	17,2	17,9	15,3	9,8	1,7	-6,6	-15,7
147	29418	СЕВЕРНОЕ		-14,8	-6,6	1,4	12,1	17,1	17,6		9,9	1,6		-15,6
156	29500	УСТЬ-ТАРКА		-15,5	-6,9	2,5	13,0	18,0	18,5		10,6	2,4		-14,9
157	29508	ВЕНГЕРОВО		-15,4	-7,2	2,0	12,8	17,9	18,4		10,3	2,1		-15,3
158	29524	КРЕЩЕНКА	-18,4	-14,8	-6,8	1,5	12,2	17,1	17,5	15,0	9,6	1,7		-15,6
161	29539	БОЛОТНОЕ	-17,5	-13,3	-5,6	1,6	12,3	17,5	18,1	15,8	10,1	1,7		-14,7
179	29602	ЧАНЫ	-17,9	-14,8	-6,4	2,8	13,3	18,2	18,5	16,4	11,0	2,7	-5,8	-14,7
180	29605	ТАТАРСК	-17,4	-14,4	-6,1	3,1	13,4	18,1	18,6	16,4	10,9	2,7	-5,7	-14,4
181	29612	БАРАБИНСК	-18,0	-14,8	-6,7	2,3	13,0	18,1	18,4	16,2	10,7	2,4	-5,8	-15,0
182	29613	УБИНСКОЕ	-18,4	-15,1	-7,1	1,9	12,6	17,5	17,8	15,7	9,9	1,8	-6,1	-15,3
183	29614	КВАШНИНО	-18,0	-15,4	-7,4	1,6	12,9	18,9	19,2	17,2	11,7	2,9		-14,9
184	29624	КАРГАТ	-18,0	-14,7	-6,7	2,1	12,9	17,9	18,3	16,0	10,2	2,1	-5,9	-15,0
185	29625	ЧУЛЫМ	-17,8	-14,4	-6,5	2,2	12,9	17,8	18,2	16,0	10,4	2,2		-14,7
186	29626	КОЧЕНЕВО	-17,6	-13,7	-5,9	2,4	13,3	18,2	18,6	16,5	10,9	2,3	-5,6	-14,5
187	29630	ТОЛМАЧЕВО АМЦ	-17,6	-13,9	-6,0	2,6	13,4	18,3	18,8	16,7	11,1	2,6		-14,4
188	29631	КОЛЫВАНЬ	-17,5	-13,6	-5,7	2,2	13,0	18,0	18,5	16,5	10,7	2,2	-5,6	-14,5
189	29632	МОШКОВО	-17,2	-13,2	-5,5	1,9	12,6	17,5	18,0	15,8	10,2	1,9	-5,8	-14,4
190	29634	НОВОСИБИРСК	-16,5	-13,0	-5,3	2,4	13,0	17,8	18,4	16,4	10,8	2,4	-5,2	-13,7
191	29635	ОБСКАЯ ГМО	-17,2	-13,7	-6,2	1,5	12,3	18,4	19,3	17,4	11,7	3,3	-4,5	-13,9
192	29636	ТОГУЧИН	-17,8	-13,5	-6,0	1,8	12,5	17,6	18,2	15,9	10,2	1,9	-6,1	-15,1
193	29637	УЧЕБНАЯ ГМС	-16,2	-12,4	-4,8	3,1	13,8	18,8	19,4	17,3	11,4	3,0	-4,6	-13,3
194	29638	ОГУРЦОВО	-17,2	-13,7	-6,0	2,2	13,2	18,2	18,8	16,7	11,1	2,7	-5,0	-14,1
207	29702	ЧИСТООЗЕРНОЕ	-17,7	-15,1	-6,8	3,1	13,8	18,8	19,1	17,0	11,5	2,9	-5,5	-14,7
208	29706	КУПИНО		-14,8	-6,5	3,5	13,9	18,8	19,1	17,2	11,6	3,0	-5,2	-14,2
209	29708	БАГАН		-14,9	-6,8	3,8	14,0	19,0	19,4	17,5	11,9	3,1	-5,2	-14,3
210	29712	ЗДВИНСК		-14,8	-6,7	2,8	13,4	18,4	18,6	16,7	11,1	2,5	-5,3	-14,6
211	29716	ДОВОЛЬНОЕ		-14,3	-6,2	2,9	13,4	18,1	18,6		11,1	2,6	-5,3	-14,3
212	29722	УЖАНИХА		-13,9	-6,3	2,0	12,4	17,1	17,5		10,3	2,0		-14,4
213	29723	ОДАЛЬНИЙ		-14,2	-6,4	1,4	13,0		19,2	-	11,8	3,3		-14,1
214	29724	КОЧКИ		-14,5	-6,6	2,7	13,5		18,7			2,5		-14,4
215		ОРДЫНСКОЕ		-13,8						17,2		2,9		-14,0
216		ИСКИТИМ		-14,4						16,6				-14,6
217		ПОСЕВНАЯ		-13,0		2,1				16,1		2,0		-13,8
218		МАСЛЯНИНО	-	-14,1	-6,6	1,4				15,9		1,9		-15,1
234	29813	КРАСНООЗЕРСК		-14,2	-6,3	3,3				17,4		2,9		-13,9
235	29814	КАРАСУК		-14,3		4,4				18,0		3,4		-13,7
238	29823	СУЗУН	-17,0	-13,0	-5,1	3,2	13,2	18,2	19,0	16,9	10,6	2,5	-5,0	-13,8

Продолжение таблицы В.1

$N_{\underline{0}}$	Индекс	Название станции	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Ал	Алтайский край													
236	29816	ХАБАРЫ	-17,6	-14,5	-6,4	3,8	14,0	18,8	19,2	17,6	11,7	3,1	-5,0	-14,0
237	29822	КАМЕНЬ-НА-ОБИ	-17,8	-14,3	-6,2	3,6	14,0	19,0	19,6	17,7	11,7	3,0	-5,0	-14,2
239	29827	БАЕВО	-17,0	-13,6	-5,7	4,3	14,0	18,9	19,4	17,6	12,0	3,5	-4,3	-13,3
240	29832	ТАЛЬМЕНКА	-17,4	-13,4	-5,6	2,9	13,0	17,9	18,6	16,5	10,6	2,4	-5,3	-14,2
241	29836	ЗАРИНСК	-16,8	-12,8	-5,0	3,1	13,1	17,9	18,8	16,8	11,1	3,0	-4,8	-13,8
242	29837	ШЕЛАБОЛИХА	-16,4	-12,7	-5,0	3,8	13,2	18,2	18,8	16,8	11,3	3,1	-4,6	-13,2
243	29838	БАРНАУЛ АМСГ	-16,3	-12,4	-4,7	4,1	14,1	18,7	19,3	17,5	11,9	3,5	-4,2	-13,1
245	29848	ТОГУЛ	-15,2	-11,8	-4,2	3,3	13,0	17,8	18,8	17,0	11,2	3,2	-4,0	-12,4
256	29915	СЛАВГОРОД	-17,0	-14,0	-5,7	5,2	14,8	19,8	20,3	18,8	12,9	3,7	-4,3	-13,4
257	29916	БЛАГОВЕЩЕНКА	-16,2	-13,0	-5,0	5,3	14,8	19,8	20,3	18,9	13,0	4,1	-3,8	-12,7
258	29923	РЕБРИХА	-16,9	-13,3	-5,7	3,7	13,8	18,5	19,0	17,3	11,4	3,1	-4,6	-13,4
259	29928	МАМОНТОВО	-16,3	-12,9	-5,3	4,4	14,1	18,8	19,3	17,7	11,9	3,5	-4,2	-12,9
260	29936	ТРОИЦКОЕ	-16,5	-12,7	-4,8	3,8	13,5	18,1	18,9	17,2	11,1	3,0	-4,6	-13,4
261	29937	АЛЕЙСКАЯ	-15,9	-12,2	-4,4	5,0	14,6	19,3	19,8	18,2	12,2	3,9	-3,7	-12,6
262	29939	БИЙСК-ЗОНАЛЬНАЯ	-16,3	-12,8	-4,8	4,3	13,9	18,5	19,4	17,8	11,8	3,5	-4,4	-13,3
263	29941	ЦЕЛИННОЕ	-15,7	-12,4	-4,8	3,4	12,9	17,7	18,7	16,9	11,2	3,1	-4,5	-12,8
265	29947	БИЙСК АМСГ	-16,8	-13,2	-4,8	4,5	13,6	18,4	19,3	17,8	11,6	3,4	-4,5	-13,4
282	36020	РОДИНО	-16,0	-12,8	-4,9	5,1	14,1	19,1	19,6	18,1	12,5	3,7	-4,0	-12,4
283	36021	КЛЮЧИ	-15,7	-12,6	-4,3	5,9	15,0	20,0	20,5	19,0	13,2	4,2	-3,7	-12,2
284	36022	ВОЛЧИХА	-16,5	-13,3	-5,0	5,2	14,2	19,1	19,7	18,2	12,0	3,4	-4,1	-13,1
285	36024	КУЛУНДА	-16,3	-13,1	-4,8	5,6	14,7	19,9	20,4	19,0	13,2	4,1	-4,0	-12,8
286	36028	УГЛОВСКОЕ	-15,0	-11,8	-3,5	6,3	14,8	19,8	20,4	19,0	13,1	4,5	-3,0	-11,8
287	36032	ПОСПЕЛИХА	-15,6	-12,3	-4,5	5,2	14,5	19,4	19,9	18,5	12,5	4,1	-3,4	-12,5
288	36033	ШИПУНОВО	-15,9	-12,4	-4,6	5,2	14,5	19,3	19,8	18,3	12,2	4,0	-3,8	-12,7
289	36034	РУБЦОВСК	-15,8	-12,7	-4,6	5,5	14,7	19,6	20,1	18,7	12,7	4,2	-3,4	-12,6
290	36036	КРАСНОЩЕКОВО	-13,8	-10,4	-3,0	5,6	14,2	18,9	19,5	17,9	12,5	4,7	-2,5	-10,9
291	36038	ЗМЕИНОГОРСК	-14,2	-10,9	-4,1	5,2	14,0	18,5	19,1	17,7	11,8	4,1	-3,1	-11,3
292	36041	УСТЬ-ЧАРЫШСКОЕ	-15,5	-11,7	-3,9	4,8	14,3	18,7	19,3	17,9	12,3	4,1	-3,6	-12,4
293	36044	УСТЬ-КАЛМАНКА	-15,2	-11,6	-3,8	5,2	14,2	18,7	19,4	17,9	12,2	4,3	-3,3	-12,1
294	36045	СОЛОНЕШНОЕ	-16,9	-12,8	-4,2	4,5	13,0	17,3	18,2	16,8	10,8	2,7	-5,2	-13,7
295	36047	ЧАРЫШСКОЕ	-14,7	-10,8	-2,9	4,8	12,9	17,1	18,2	16,9	11,2	3,5	-3,8	-12,1

Таблица В.2 - Отклонение средней месячной температуры воздуха (°C) от климатической нормы на территории Томской области

№	Индекс	Название станции	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
48	23955	АЛЕКСАНДРОВСКОЕ	0,7	2,7	2,0	0,4	2,8	2,5	-0,6	0,5	0,4	1,6	1,8	-0,7
49	23966	ВАНЖИЛЬ-КЫНАК	0,2	3,1	2,4	0,6	2,6	2,6	-0,5	0,6	0,6	1,2	1,6	-0,8
115	29016	ПРОХОРКИНО	0,2	2,5	2,1	0,4	2,9	2,3	-0,6	0,5	0,4	1,1	1,6	-0,8
116	29023	НАПАС	0,3	3,1	2,3	0,6	2,9	2,5	-0,5	0,4	0,6	1,2	1,7	-0,5
117	29037	БЕРЕЗОВКА	0,3	3,4	2,5	0,4	2,6	2,3	-0,6	0,3	0,6	0,9	1,6	-0,6
120	29111	СРЕДНИЙ ВАСЮГАН	0,6	2,7	2,2	0,3	2,8	2,0	-0,7	0,5	0,5	1,4	1,8	-0,5
121	29122	КАРГАСОК	0,1	3,2	2,4	0,3	2,8	2,2	-0,7	0,4	0,7	1,2	1,7	-0,8
122	29128	ПАРАБЕЛЬ	-0,1	3,1	2,3	0,2	2,7	2,0	-0,7	0,3	0,6	0,9	1,5	-0,8
123	29149	СТЕПАНОВКА	0,8	4,2	3,1	0,6	2,9	2,3	-0,3	0,4	0,8	0,7	2,0	0,1
124	29154	УСТЬ-ОЗЕРНОЕ	0,5	3,5	2,5	0,7	2,9	2,3	-0,2	0,4	0,6	0,7	1,6	-0,1
125	29203	НОВЫЙ ВАСЮГАН	0,3	2,4	2,1	0,1	2,6	1,7	-1,0	-	0,5	1,2	2,1	-0,4
126	29209	МАЙСК	0,6	3,0	2,6	0,3	3,0	1,9	-0,8	0,5	0,6	1,0	2,2	0,2
127	29224	СТАРИЦА	0,1	2,7	2,1	0,3	2,7	1,7	-0,7	0,4	0,7	0,8	1,8	-0,6
128	29231	КОЛПАШЕВО	0,4	3,6	2,7	0,6	3,1	2,1	-0,5	0,4	0,9	1,0	2,1	0,0
129	29237	ПОДГОРНОЕ	0,1	3,3	2,6	0,6	3,1	1,9	-0,6	0,4	1,1	1,2	2,2	0,1
130	29247	БАТУРИНО	0,4	3,9	2,8	0,7	3,1	2,0	-0,2	0,8	1,1	1,0	2,2	0,3
136	29313	ПУДИНО	0,3	3,2	2,4	0,2	2,8	1,8	-0,7	0,6	0,8	0,9	2,1	-0,3
137	29328	БАКЧАР	-0,1	3,2	2,3	0,4	2,9	1,4	-0,7	0,6	0,9	1,0	2,2	0,0
138	29332	МОЛЧАНОВО	0,0	3,2	2,2	0,6	3,2	2,0	-0,4	0,7	1,0	1,0	2,1	0,1
139	29348	ПЕРВОМАЙСКОЕ	0,3	3,8	2,6	0,8	3,0	1,9	-0,1	0,8	0,8	0,8	2,3	0,4
140	29355	ТЕГУЛЬДЕТ	0,3	3,9	2,6	0,5	2,6	1,8	-0,2	0,2	0,8	0,7	2,2	0,1
148	29430	ТОМСК	0,0	3,2	2,3	0,5	2,5	1,5	-0,6	0,4	0,5	0,7	2,4	0,5
159	29532	КОЖЕВНИКОВО	0,3	3,9	3,1	0,6	2,6	1,4	-0,6	0,5	0,7	1,0	2,5	0,9
Cpe	днее		0,3	3,3	2,4	0,5	2,8	2,0	-0,5	0,5	0,7	1,0	2,0	-0,2
Mai	ссималь	ное	0,8	4,2	3,1	0,8	3,2	2,6	-0,1	0,8	1,1	1,6	2,5	0,9
Ми	нимальн	юе	-0,1	2,4	2,0	0,1	2,5	1,4	-1,0	0,2	0,4	0,7	1,5	-0,8

Таблица В.3 - Отклонение средней месячной температуры воздуха ($^{\circ}$ C) от климатической нормы на территории Кемеровской области

№	Индекс	Название станции	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
160	29536	ЮРГА	-0,9	2,4	1,6	0,3	2,6	1,3	-0,9	0,3	0,6	1,0	2,4	-0,2
162	29540	ЯЯ	0,2	3,9	2,7	0,7	2,8	1,9	0,0	0,8	0,9	0,7	2,4	0,3
163	29541	ТАЙГА	0,2	3,4	2,4	0,7	2,7	1,5	-0,3	0,7	0,8	0,9	2,5	0,4
164	29548	БАРЗАС	0,2	3,3	2,6	0,8	3,0	2,0	0,1	1,1	1,0	0,8	2,4	0,5
165	29551	МАРИИНСК	0,1	3,6	2,4	0,9	2,8	1,8	-0,1	0,8	0,9	0,9	2,3	0,2
166	29552	НИЖКТ	0,4	3,9	2,7	1,2	2,9	1,8	0,1	0,9	1,0	1,0	2,3	0,4
167	29553	ТИСУЛЬ	-0,4	3,2	1,9	0,0	2,1	1,5	-0,2	0,5	0,5	0,0	1,1	-0,7
195	29641	ТОПКИ	0,1	3,0	2,6	0,8	2,7	1,5	-0,5	0,6	0,6	1,0	2,4	0,4
196	29642	КЕМЕРОВО АМСГ	1,1	4,0	2,9	0,4	2,6	1,2	-0,4	0,4	0,4	0,5	2,2	1,0
197	29644	ПРОМЫШЛЕННАЯ	0,7	3,7	3,1	1,1	2,9	1,7	0,0	1,1	1,1	1,2	2,6	0,7
198	29645	КЕМЕРОВО	0,2	3,2	2,6	0,8	2,8	1,7	-0,2	0,8	0,8	0,9	2,4	0,5
199	29649	КРАПИВИНО	0,8	3,8	3,0	0,7	2,2	1,3	-0,1	0,8	0,9	0,8	2,4	0,5
201	29654	ЦЕНТР РУДНИК	-0,2	2,3	2,1	0,8	2,2	1,3	-0,3	0,7	0,7	0,7	2,3	0,4
219	29741	КРАСНОЕ	0,0	3,4	2,4	0,7	2,4	1,6	0,0	1,1	1,1	1,0	2,2	0,1
220	29745	БЕЛОВО	0,4	3,7	2,9	0,9	2,5	1,4	-0,1	1,0	1,0	1,2	2,2	0,4
221	29749	КИСЕЛЕВСК	0,0	2,7	2,4	0,9	2,3	0,9	-0,5	0,6	0,8	0,9	2,3	0,2
244	29846	НОВОКУЗНЕЦК АМСГ	0,2	2,9	2,5	0,7	2,3	0,7	-0,4	0,5	0,6	0,7	2,3	-0,5
246	29849	КУЗЕДЕЕВО	0,4	3,1	3,0	0,7	1,6	0,8	0,0	0,6	0,7	0,7	2,6	0,6
247	29854	МЕЖДУРЕЧЕНСК	-1,1	1,7	1,0	-0,4	0,8	0,3	-0,7	0,0	-0,4	-0,5	1,2	-0,8
264	29946	КОНДОМА	0,6	2,9	2,6	0,7	2,0	1,5	0,4	1,1	0,7	0,4	2,4	1,0
266	29954	ТАШТАГОЛ	1,0	3,7	3,1	0,9	1,8	1,6	0,1	0,7	0,4	0,7	3,1	1,3
267	29955	УСТЬ-КАБЫРЗА	1,0	3,2	2,1	0,9	1,7	1,2	0,8	0,9	0,7	0,6	2,8	1,1
Cpe	днее		0,2	3,2	2,5	0,7	2,4	1,4	-0,1	0,7	0,7	0,7	2,3	0,4
Mai	ксималь	ное	1,1	4,0	3,1	1,2	3,0	2,0	0,8	1,1	1,1	1,2	3,1	1,3
Ми	нимальн	ioe	-1,1	1,7	1,0	-0,4	0,8	0,3	-0,9	0,0	-0,4	-0,5	1,1	-0,8

Таблица В.4 - Отклонение средней месячной температуры воздуха ($^{\circ}$ C) от климатической нормы на территории Новосибирской области

$N_{\underline{0}}$	Индекс	Название станции	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
146	29405	КЫШТОВКА	0,5	3,0	2,6	0,1	2,5	1,3	-0,5	0,6	0,8	1,1	2,2	0,2
147	29418	СЕВЕРНОЕ	0,7	3,3	2,7	0,5	2,7	1,3	-0,7	0,7	1,2	1,3	2,7	0,4
156	29500	УСТЬ-ТАРКА	0,6	2,8	2,9	0,6	2,7	1,3	-0,5	0,8	1,2	1,5	2,5	0,7
157	29508	ВЕНГЕРОВО	0,5	2,8	2,3	0,3	2,6	1,2	-0,9	0,6	0,6	1,3	2,6	0,6
158	29524	КРЕЩЕНКА	0,1	3,1	2,5	0,5	2,6	1,2	-0,8	0,4	0,6	1,0	2,4	0,1
161	29539	БОЛОТНОЕ	-0,1	3,1	2,4	0,4	2,6	1,2	-0,9	0,4	0,6	0,9	2,4	0,4
179	29602	ЧАНЫ	0,4	3,0	2,9	0,6	2,6	1,1	-0,9	0,7	0,9	1,4	2,5	0,5
180	29605	ТАТАРСК	0,6	2,9	2,5	0,4	2,4	0,8	-1,0	0,5	0,6	1,3	2,3	0,5
181	29612	БАРАБИНСК	0,5	3,2	2,8	0,7	2,6	1,2	-0,9	0,6	0,8	1,3	2,8	0,4
182	29613	УБИНСКОЕ	0,2	3,1	2,8	0,8	2,6	1,1	-1,1	0,6	0,6	1,0	2,7	0,3
183	29614	КВАШНИНО	0,2	2,6	2,5	0,4	2,3	1,2	-1,0	0,5	0,8	1,2	2,7	0,1
184	29624	КАРГАТ	0,3	3,2	2,9	0,7	2,6	1,2	-0,8	0,6	0,6	1,1	2,7	0,4
185	29625	ЧУЛЫМ	0,2	3,3	2,9	0,8	2,6	1,2	-0,8	0,6	0,7	1,1	2,8	0,6
186	29626	КОЧЕНЕВО	0,2	3,4	2,8	0,7	2,8	1,3	-0,7	0,7	0,8	1,1	2,7	0,6
187	29630	ТОЛМАЧЕВО АМЦ	0,2	3,5	3,0	0,8	2,8	1,4	-0,6	0,9	0,9	1,1	2,8	0,7
188	29631	КОЛЫВАНЬ	0,3	3,6	3,2	0,9	2,8	1,4	-0,6	1,0	0,9	1,1	2,9	0,8
189	29632	МОШКОВО	-0,1	3,1	2,6	0,7	2,7	1,3	-0,7	0,6	0,6	0,9	2,5	0,4
190	29634	НОВОСИБИРСК	0,2	3,4	3,0	0,8	2,8	1,4	-0,5	0,9	0,9	1,1	2,8	0,7
191	29635	ОБСКАЯ ГМО	0,0	2,9	2,5	-0,2	2,6	1,4	-0,7	0,7	0,8	0,7	2,7	0,5
192	29636	ТОГУЧИН	0,1	3,6	2,5	0,2	2,3	1,0	-0,9	0,4	0,7	0,8	2,2	0,3
193	29637	УЧЕБНАЯ ГМС	0,2	3,2	2,6	1,2	2,6	1,1	-0,6	0,6	0,6	0,7	2,7	0,8
194	29638	ОГУРЦОВО	0,2	3,2	2,8	0,6	2,7	1,3	-0,5	0,8	0,9	1,0	2,8	0,7
207	29702	ЧИСТООЗЕРНОЕ	0,5	2,8	2,9	0,8	2,4	0,8	-1,1	0,6	0,8	1,3	2,6	0,4
208	29706	КУПИНО	0,7	3,0	3,0	0,8	2,4	0,9	-0,9	0,8	0,9	1,3	2,8	0,7
209	29708	БАГАН	0,5	3,2	3,0	1,0	2,2	0,7	-1,0	0,8	0,9	1,2	2,8	0,8
210	29712	ЗДВИНСК	0,6	3,4	3,3	0,9	2,4	1,1	-1,0	0,8	0,9	1,1	3,1	0,8
211	29716	ДОВОЛЬНОЕ	0,5	3,2	3,2	0,9	2,4	0,9	-0,8	0,8	0,9	1,1	2,9	0,6
212	29722	УЖАНИХА	0,2	3,6	3,2	0,5	1,9	0,4	-1,3	0,1	0,5	0,8	2,6	0,5
213	29723	ОДАЛЬНИЙ	-0,1	3,1	3,0	0,6	2,2	1,3	-0,9	0,5	0,7	0,8	2,6	0,4
214	29724	КОЧКИ	0,4	3,4	3,4	1,0	2,7	1,1	-0,6	1,1	1,0	1,2	2,9	0,7
215	29726	ОРДЫНСКОЕ	0,1	3,5	3,2	0,7	2,6	1,2	-0,5	0,9	0,7	0,9	2,6	0,8
216	29730	ИСКИТИМ	-0,2	3,0	2,6	0,4	2,4	1,2	-0,3	0,9	0,7	0,6	2,3	0,6
217	29735	ПОСЕВНАЯ	0,2	3,2	2,9	0,8	2,5	1,0	-0,7	0,7	0,6	0,9	2,6	0,8
218	29736	МАСЛЯНИНО	0,2	3,6	2,8	0,6	2,4	1,5	-0,1	1,0	0,9	0,8	2,7	0,9
234	29813	КРАСНООЗЕРСК	0,6	3,4	3,4	0,8	2,4	1,0	-0,8	1,1	0,9	1,0	2,7	0,8
235	29814	КАРАСУК	0,8	3,4	3,4	1,2	2,3	0,9	-0,7	0,9	0,8	1,2	2,9	1,1
238	29823	СУЗУН	0,5	3,5	3,4	1,1	2,4	1,2	-0,3	1,0	0,7	0,8	2,7	0,9
Сре	днее		0,3	3,2	2,9	0,7	2,5	1,1	-0,7	0,7	0,8	1,1	2,7	0,6
Mai	ксималь	ное	0,8	3,6	3,4	1,2	2,8	1,5	-0,1	1,1	1,2	1,5	3,1	1,1
Ми	нимальн	ioe	-0,2	2,6	2,3	-0,2	1,9	0,4	-1,3	0,1	0,5	0,6	2,2	0,1

Таблица В.5 - Отклонение средней месячной температуры воздуха ($^{\circ}$ C) от климатической нормы на территории Алтайского края

№	Индекс	Название станции	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
236	29816	ХАБАРЫ	0,4	3,4	3,6	1,2	2,3	0,9	-0,7	1,1	1,0	1,2	2,8	0,9
237	29822	КАМЕНЬ-НА-ОБИ	-0,2	2,8	2,8	1,0	2,3	1,1	-0,3	1,2	0,9	1,0	2,7	0,5
239	29827	БАЕВО	0,2	3,4	3,8	1,2	1,9	0,7	-0,8	0,9	1,0	1,1	2,6	1,0
240	29832	ТАЛЬМЕНКА	0,4	3,6	3,1	0,8	2,1	1,0	-0,4	0,8	0,9	0,7	2,6	1,0
241	29836	ЗАРИНСК	-0,4	3,1	2,8	0,6	1,8	0,6	-0,7	0,4	0,6	0,8	2,5	0,6
242	29837	ШЕЛАБОЛИХА	0,0	3,2	3,1	0,8	1,5	0,4	-1,1	0,2	0,4	0,8	2,5	0,7
243	29838	БАРНАУЛ АМСГ	-0,2	3,0	3,0	1,1	2,2	0,6	-1,0	0,8	0,7	1,0	2,8	0,7
245	29848	ТОГУЛ	-0,2	2,7	3,1	1,0	2,0	0,9	-0,4	0,8	0,6	0,9	2,7	0,5
256	29915	СЛАВГОРОД	0,5	3,3	3,6	1,2	1,8	0,4	-1,0	1,0	0,8	1,0	2,7	0,9
257	29916	БЛАГОВЕЩЕНКА	0,5	3,4	3,6	1,2	1,8	0,4	-1,2	0,7	0,5	1,0	2,7	1,1
258	29923	РЕБРИХА	-0,5	2,8	2,9	0,8	2,1	0,8	-0,7	0,9	0,7	0,8	2,4	0,6
259	29928	МАМОНТОВО	-0,3	2,9	3,6	1,5	2,0	0,6	-1,0	0,6	0,5	0,8	2,4	0,6
260	29936	ТРОИЦКОЕ	0,2	3,4	3,5	1,5	2,3	1,2	-0,2	1,2	1,0	0,8	2,7	1,0
261	29937	АЛЕЙСКАЯ	-0,2	2,9	3,1	1,1	2,0	0,9	-0,7	0,9	0,7	0,9	2,7	0,8
262	29939	БИЙСК-ЗОНАЛЬНАЯ	0,0	2,8	3,1	1,1	2,0	1,0	-0,2	1,1	0,9	0,8	2,2	0,4
263	29941	ЦЕЛИННОЕ	-0,2	2,8	3,0	0,9	1,8	0,8	-0,4	0,6	0,6	0,7	2,3	0,5
265	29947	БИЙСК АМСГ	0,1	2,7	3,0	1,2	1,9	1,1	-0,3	1,2	1,0	0,7	2,1	0,8
282	36020	РОДИНО	0,1	3,3	3,9	1,1	1,3	0,1	-1,3	0,5	0,7	0,8	2,4	1,0
283	36021	КЛЮЧИ	0,6	3,5	4,1	1,3	1,8	0,5	-0,8	1,0	1,0	1,1	2,5	1,1
284	36022	ВОЛЧИХА	0,3	3,3	4,3	1,6	1,8	0,7	-0,8	1,1	0,8	0,7	2,6	1,1
285	36024	КУЛУНДА	0,5	3,6	4,0	1,3	1,4	0,3	-1,1	0,9	0,9	1,1	2,6	1,1
286	36028	УГЛОВСКОЕ	0,0	3,1	4,1	1,3	1,1	0,3	-1,1	0,7	0,7	0,7	2,4	0,8
287	36032	ПОСПЕЛИХА	0,4	3,1	3,6	1,3	1,9	0,9	-0,6	1,0	0,9	1,1	3,1	1,2
288	36033	ШИПУНОВО	-0,1	2,9	3,1	1,1	1,9	1,0	-0,6	0,9	0,6	0,9	2,5	0,9
289	36034	РУБЦОВСК	0,1	2,9	3,6	1,5	1,7	0,8	-0,6	1,0	0,7	0,8	2,7	1,0
290	36036	КРАСНОЩЕКОВО	0,0	3,2	3,8	1,5	1,7	0,8	-0,3	0,8	0,9	1,1	2,8	0,7
291	36038	ЗМЕИНОГОРСК	-0,1	3,4	3,5	1,8	1,9	1,1	-0,2	1,1	0,6	0,8	2,6	0,7
292	36041	УСТЬ-ЧАРЫШСКОЕ	-0,6	2,4	2,9	1,1	1,9	0,8	-0,7	0,7	0,7	1,0	2,5	0,2
293	36044	УСТЬ-КАЛМАНКА	-0,7	2,3	2,9	0,9	1,5	0,5	-0,7	0,6	0,5	0,7	2,3	0,2
294	36045	СОЛОНЕШНОЕ	-0,8	2,5	3,4	1,3	1,6	0,9	0,0	1,2	0,5	0,2	1,4	-0,2
295	36047	ЧАРЫШСКОЕ	-0,5	2,5	3,0	0,8	1,4	0,5	-0,4	0,8	0,5	0,5	2,0	0,1
Сре	еднее		0,0	3,0	3,4	1,2	1,8	0,7	-0,7	0,9	0,7	0,9	2,5	0,7
Mai	ксималь	ное	0,6	3,6	4,3	1,8	2,3	1,2	0,0	1,2	1,0	1,2	3,1	1,2
Ми	нимальн	юе	-0,8	2,3	2,8	0,6	1,1	0,1	-1,3	0,2	0,4	0,2	1,4	-0,2

ПРИЛОЖЕНИЕ С Таблица С.1 – Повторяемость (%) различных градаций осадков (мм) по периодам года (2000-2006гг.)

				T 7		.,								.,											
- /	Индекс			Холо	ОДНЫ	й пер	риод				1	lepex	кодн	ый п	ерио,	Д				Tei	ІЛЫЙ	пері	иод		
п/п	станции	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0
	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ночь	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
1	23176	56	42	2	0	53	44	2	0	60	35	4	1	57	38	4	1	69	26	4	1	67	26	4	2
2	23179	53	44	3	0	56	40	4	0	55	40	4	0	59	37	4	0	70	26	4	1	70	26	3	1
3	23226	37	58	4	0	81	19	0	0	41	50	7	2	80	19	1	0	54	34	9	3	83	16	1	0
4	23242	62	37	1	0	79	21	0	0	57	40	3	0	77	23	0	0	63	32	4	1	81	18	1	0
5	23256	51	45	4	0	70	30	0	0	57	36	6	1	70	29	1	0	66	25	7	2	78	20	2	0
6	23274	46	53	1	0	51	48	1	0	58	37	4	0	60	36	4	0	69	22	6	2	73	20	5	2
7	23330	53	44	2	0	77	23	0	0	68	27	4	1	79	20	2	0	67	21	7	5	81	16	3	0
8	23339	57	40	3	0	75	25	0	0	63	30	6	1	75	23	1	0	68	24	6	2	73	23	3	1
9	23345	67	32	1	0	75	25	0	0	63	33	3	0	75	25	1	0	67	25	7	2	79	20	1	0
10	23358	55	43	2	0	67	33	0	0	56	39	5	1	69	30	1	0	66	24	8	3	78	19	2	0
11	23363	61	39	0	0	60	40	0	0	65	33	3	0	63	35	2	0	78	18	4	1	73	22	4	0
12	23375	44	55	1	0	47	51	2	0	52	44	4	0	54	41	4	1	64	28	6 7	2	71	23	4	2
13 14	23426 23431	56 55	39 41	4 3	0	74 76	26 24	0	0	63	30 27	6 6	2	79 76	20 22	1 1	0	64 67	25 23	6	4 3	80 80	18 18	2	0
15	23431	51	46	3	0	68	32	0	$0 \\ 0$	66 56	37	6	1	69	30	1	0	65	25	6	3	76	22	2 2	0
16	23445	53	44	3	0	70	30	0	0	58	35	6	1	73	26	1	0	66	22	7	4	77	20	$\frac{2}{2}$	0
17	23443	60	39	1	0	58	41	1	0	65	31	4	1	61	36	2	0	72	22	5	1	73	22	4	1
18	23465	66	33	1	0	64	36	0	0	65	30	4	1	68	30	2	0	70	18	7	4	77	18	4	1
19	23471	57	41	2	ő	59	40	1	0	66	27	5	1	70	28	2	ő	69	20	7	4	74	20	4	1
20	23472	48	51	$\frac{1}{1}$	ő	49	49	2	0	60	36	4	0	57	36	5	1	67	24	7	2	69	24	5	1
21	23484	55	45	$\bar{1}$	Ö	56	43	$\overline{1}$	Ō	60	35	4	0	57	39	3	1	67	25	6	$\overline{1}$	71	23	5	2
22	23552	52	45	3	0	64	36	0	0	59	33	7	1	70	27	2	0	65	23	9	3	77	19	3	1
23	23578	53	45	2	0	55	43	2	0	59	35	5	0	61	33	6	1	70	20	7	2	73	21	5	1
24	23589	55	44	0	0	55	44	1	0	63	34	2	1	61	33	5	1	72	20	7	1	73	21	4	2
25	23629	60	37	3	0	74	26	0	0	68	24	6	2	77	21	2	0	72	18	6	4	80	18	2	0
26	23631	54	42	4	0	73	27	0	0	64	29	6	2	76	22	2	0	69	20	7	3	78	19	2	1
27	23632	54	43	3	0	74	25	0	0	55	36	7	1	74	24	1	0	56	32	8	4	76	22	2	0
28	23635	52	43	4	0	66	33	0	0	61	31	5	3	71	26	2	0	62	25	8	5	71	24	4	1
29	23656	59	39	2	0	65	35	0	0	66	27	6	1	70	28	3	0	67	23	7	3	75	21	4	1
30	23662	56	42	2	0	60	40	0	0	62	30	7	1	66	31	3	0	67	22	8	3	78	16	5	0
31	23678	52	45	2	0	57	41	2	0	62	32	5	1	62	32	5	1	70	19	7	4	76	17	5	3

п/п	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0
	Підске	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
32	23734	50	44	5	0	70	29	0	0	67	22	8	3	75	22	2	0	69	18	8	6	78	19	3	0
33	23774	53	46	1	0	55	43	1	0	68	28	4	1	66	30	3	1	71	19	7	3	72	19	6	3
34	23776	50	48	1	0	59	40	1	0	63	33	3	0	65	31	3	0	68	25	7	1	73	22	5	1
35	23788	45	53	2	0	45	53	2	0	59	35	5	1	63	29	6	1	67	25	6	2	72	19	7	2
36	23789	48	51	1	0	51	48	1	0	61	35	3	0	62	34	4	0	66	24	7	3	68	25	5	2
37	23823	58	38	3	0	71	29	0	0	67	23	7	2	74	24	2	1	65	23	8	5	80	16	3	0
38	23847	56	41	3	0	68	32	0	0	68	25	6	1	75	23	2	0	67	20	7	6	77	20	3	1
39	23848	58	40	2	0	67	32	0	0	69	25	4	1	78	19	2	0	68	20	7	5	78	19	2	1
40	23862	54	44	2	0	56	43	1	0	64	29	5	1	63	33	4	0	69	21	6	4	71	23	5	1
41	23867	55	43	2	0	58	41	1	0	65	28	6	0	65	31	3	0	68	23	7	2	73	21	4	2
42	23884	50	48	1	0	52	46	2	0	66	30	3	1	66	29	4	1	72	20	5	2	76	17	5	2
43	23891	58	41	2	0	61	38	1	0	69	27	4	0	70	25	5	1	74	18	5	3	75	17	6	1
44	23933	54	41	4	1	68	31	1	0	69	24	5	2	77	20	3	0	69	18	7	5	79	17	2	1
45	23939	60	36	4	0	68	31	1	0	68	25	5	2	75	23	2	0	69	20	6	6	77	19	3	1
46	23946	55	40	4	0	64	35	1	0	64	28	6	2	74	24	2	0	63	24	8	5	76	19	3	1
47	23953	66	32	2	0	60	39	1	0	68	28	4	0	67	30	3	0	68	21	7	3	74	18	6	2
48	23955	58	41	2	0	58	40	1	0	70	25	4	1	70	26	3	0	70	22	6	2	70	22	5	3
49	23966	57	42	2	0	61	37	1	0	63	32	5	1	68	27	4	1	71	20	5	4	75	17	6	3
50	23973	51	47	2	0	55	44	1	0	65	29	6	0	68	27	5	0	71	21	6	2	76	16	6	2
51	23975	58	41	1	0	61	38	1	0	67	29	4	1	69	27	4	1	72	21	4	3	73	20	5	2
52	23982	55	44	1	0	56	43	2	0	61	33	6	1	61	33	5	2	67	22	8	2	70	23	5	2
53	23986	47	52	1	0	53	45	2	0	54	43	2	0	57	39	3	0	68	26	4	2	72	23	4	2
54	23987	43	56	2	0	52	47	1	0	64	31	4	1	65	30	4	0	70	21	6	3	74	20	4	3
55	23992	59	40	0	0	60	39	1	0	68	28	4	0	68	29	3	0	73	19	7	1	77	17	4	2
56	28064	61	36	2	0	71	28	1	0	69	24	5	2	76	20	2	1	65	24	7	4	81	15	3	1
57	28066	62	37	1	0	70	28	1	0	70	23	5	2	76	20	3	0	64	25	8	3	80	17	2	0
58	28076	56	40	3	0	68	31	1	0	66	26	5	3	76	21	3	0	66	22	6	6	79	16	3	1
59	28097	54	43	3	0	65	34	1	0	64	30	6	1	72	26	2	0	65	23	7	5	73	22	3	1
60	28158	58	38	3	0	73	27	0	0	66	27	5	2	76	21	2	0	60	27	9	4	79	16	3	2
61	28165	56	40	3	0	70	29	1	0	70	23	5	2	76	21	3		66	23	7	4	78	18	3	1
62	28172	58	39	3	0	69	30	1	0	67	25	6	2	79	18	3	0	65	23	7	4	80	16	3	1
63	28255	64	32	3	1	74	26		0	70	21	6	2	80	18	2	0	67	21	8	4	80	16	3	1
64	28264	60	36	4	0	72	28	0	0	68	24	6	2	77	21	2	0	61	28	7	3	78	18	3	2
65	28275	58	40	2	0	73	27	l	0	69	23	6	2	78	20	2	0	65	23	7	4	81	15	3	1
66	28278	62	36	2	0	73	26	1	0	70	23	5	2	79	19	2	0	66	23	8	3	79	16	4	1

> 10.0	0 –	5.0	- 4.0	2.0 -	- 0.1	0.0	0.0	> 1) —	5.0	- 4.0	2.0 -	- 0.1	0.0 -	0.0	> 1) —	5.0	- 4.0	2.0 -	- 0.1	0.0	Индекс	п/п
ноч ден	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	Підске	
3 1	16	79	3	7	26	64	0	2	20	79	1	5	22	71	0	0	27	72	0	2	37	61	28366	67
$\begin{vmatrix} 1 & 4 & 1 \end{vmatrix}$	15	80	2	7	24	66	0	1	19	79	2	5	22	71	0	0	26	74	0	2	34	64	28367	68
	16	80	4	7	21	68	0	2	20	78	2	4	23	71	0	1	26	73	0	2	36	62	28382	69
	18	79	5	7	30	58	0	2	20	78	1	4	29	65	0	1	28	71	0	2	44	54	28383	70
	15	81	3	6	21	69	0	2	18	80	1	6	21	72	0	1	22	77	0	2	30	68	28451	71
	20	76	3	9	28	60	0	2	19	80	2	6	23	69	0	1	24	75	0	2	33	65	28456	72
3 1	19	77	2	6	29	62	0	2	18	80	1	4	24	71	0	0	24	76	0	2	32	66	28465	73
3 1	18	79	2	9	25	64	0	1	18	80	1	4	25	70	0	1	26	73	0	2	35	63	28478	74
	15	81	5	6	21	68	0	2	17	81	1	5	23	71	0	1	25	75	0	1	31	67	28481	75
5 3 1	16	80	4	7	22	67	0	2	18	80	1	4	20	74	0	1	26	73	0	2	27	70	28491	76
	15	81	3	7	23	67	0	2	22	76	1	4	22	73	0	1	31	67	0	1	37	62	28493	77
	15	80	3	7	19	70	0	2	17	81	2	5	19	74	0	1	20	79	0	2	29	69	28552	78
	18	79	3	7	22	67	0	2	17	81	1	3	22	74	0	1	25	74	0	2	31	67	28573	79
-	16	79	5	7	19	69	0	2	16	82	1	5	19	74	0	1	23	76	0	2	29	69	28581	80
	15	82	3	9	31	57	0	1	17	82	1	3	27	69	0	0	24	76	0	1	33	66	28586	81
	16	80	3	8	26	63	0	1	17	82	1	4	22	73	0	1	23	76	0	2	29	69	28587	82
	15	81	3	9	23	65	0	2	15	83	1	2	24	73	0	0	22	77	0	2	29	69	28588	83
	17	81	3	7	18	71	0	1	19	80	0	2	19	78	0	1	27	72	0	1	32	67	28593	84
	17	80	3	6	19	72	0	2	17	81	0	3	17	80	0	1	29	71	0	2	29	69	28598	85
	18	80	2	5	16	77	0	1	16	83	1	3	16	80	0	1	21	78	0	1	20	79	28655	86
	17	79	3	4	18	74	0	2	15	82	1	5	17	77	0	0	24	75	0	2	28	71	28661	87
	18	80	3	6	19	72	0	2	16	82	1	3	20	75	0	0	23	76	0	1	28	70	28666	88
	15	82	3	7	20	70	0	1	15	83	1	4	17	78	0	1	21	78	0	2	31	67	28679	89
	14	82	4	7	21	69	0	2	14	85	I	2	20	77	0	0	22	78	0	2	27	71	28688	90
	17	80	3	6	29	61	0	2	15	82	1	3	22	75	0		25	75	0	2	33	65	28696	91
	15	82	2	8	26	64	0	2	16	82	l l	3	19	77	0	l 1	28	71	0	2	35	63	28698	92
	15										I				_					2				
	20	l	2	1			0				I				_					I				
	15										1 1				_	_				I				
	19		2	1							1 1				_	_			-	I				
	1						0	2		-	1				_	_			-	1 2				
	1	l		_			1				1					1			_					
	1							2			1				0	I			-					
				1			1 0				1 1				0	1 1			-					l l
5	2 1 1 1 1 1 1	82 76 81 78 84 84 83 84 83	3 2 3 2 3 3 3 4	5 5 6 7 5 6 5 7 5	20 24 14 27 15 23 20 18 20	73 70 78 63 77 68 72 73 72	0 0 1 0 0 0 1 1 0	2 2 2 2 2 1 1 2 2	13 15 15 18 14 14 14 14 14	85 83 80 84 85 84 84 84	1 1 1 1 1 1 0 1	5 5 5 3 2 3 3 2 2	20 18 16 20 15 20 15 16 16	74 76 79 75 82 76 81 81	0 0 0 0 0 0 0	1 0 1 0 0 0 1 1 1	22 25 25 21 19 21 23 22 22	78 75 75 78 80 79 76 77	0 0 0 0 0 0 0	2 1 1 1 2 2 2 2 2	30 29 27 33 22 35 25 24 24	68 69 72 65 76 63 73 74 74	28756 28764 28766 28775 28785 28786 28791 28797 28798	93 94 95 96 97 98 99 100 101

Продолжение таблицы С.1

п/п	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0
	индекс	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
102	28799	62	36	2	0	76	23	1	0	74	22	3	0	83	15	2	0	64	28	5	2	84	13	2	1
103	28867	74	24	2	0	79	20	1	0	78	17	4	1	84	14	2	0	77	16	4	2	83	15	2	0
104	28873	74	24	2	0	83	17	0	0	79	17	3	1	84	15	2	0	71	20	5	3	84	14	2	0
105	28877	61	36	3	0	78	21	1	0	75	19	5	1	83	15	2	0	72	17	8	3	84	13	2	0
106	28879	75	23	2	0	82	17	1	0	79	17	2	1	85	14	1	0	73	17	6	3	86	11	2	0
107	28886	81	17	2	0	85	14	1	0	84	13	3	0	87	12	1	0	77	14	6	3	86	11	3	0
108	28895	65	33	2	0	80	19	0	0	76	21	2	1	84	14	2	0	65	24	7	4	86	12	2	0
109	28952	75	23	2	0	83	16	1	0	79	16	4	1	85	12	2	0	78	14	6	2	88	10	2	0
110	28957	76	22	2	0	82	17	1	0	79	16	4	1	85	13	2	0	76	17	5	3	85	13	1	0
111	28966	69	29	2	0	79	21	0	0	78	17	5	0	84	14	1	0	76	17	4	3	86	13	1	0
112	28978	61	35	4	0	77	22	1	0	77	18	4	1	84	14	1	0	73	17	7	3	85	14	1	0
113	28984	71	27	1	0	82	18	0	0	76	20	3	0	85	14	1	0	71	20	6	3	84	14	1	1
114	28993	71	28	1	0	81	18	0	0	79	17	3	1	84	14	2	0	70	20	7	4	85	12	2	1
115	29016	52	47	1	0	55	43	2	0	66	30	3	1	67	27	4	1	66	26	6	2	70	22	6	2
116	29023	54	45	1	0	57	42	1	0	64	31	4	1	67	27	5	1	69	23	5	2	73	18	5	3
117	29037	54	45	2	0	60	39	1	0	67	28	5	1	69	26	5	1	68	23	6	4	77	17	5	1
118	29059	50	49	1	0	53	46	1	0	64	31	4	1	65	30	4	1	73	20	5	2	74	20	3	3
119	29068	48	51	2	0	51	48	1	0	59	34	6	1	61	33	5	1	71	22	4	2	78	16	5	2
120	29111	55	44	1	0	56	42	2	0	70	25	3	1	72	24	3	1	66	25	6	2	71	22	5	3
121	29122	68	31	1	0	67	32	1	0	72	24	2	1	73	23	3	1	72	20	6	3	74	19	4	3
122	29128	54	44	2	0	69	30	1	0	68	27	4	1	72	24	3	1	68	23	6	3	72	21	5	2
123	29149	55	43	2	0	58	42	1	0	68	27	5	0	67	28	4	1	71	21	6	2	73	20	5	3
124	29154	62	37	1	0	64	35	1	0	70	25	4	1	69	26	4	0	78	17	3	1	80	14	5	1
125	29203	56	42	2	0	64	35	1	0	69	25	4	1	72	24	3	0	65	25	7	3	71	24	4	1
126	29209	65	33	2	0	66	32	2	0	74	22	4	0	74	21	4	1	68	22	7	2	72	20	5	3
127	29224	62	37	2	0	64	34	2	0	73	23	3	0	73	22	4	1	70	20	7	2	74	18	6	2
128	29231	59	40	1	0	59	39	1	0	72	25	3	1	72	24	3	1	72	18	7	3	76	17	5	2
129	29237	61	38	1	0	60	39	1	0	67	30	3	0	72	25	2	0	65	26	5	4	73	22	3	1
130	29247	48	48	3	0	62	37	1	0	65	30	5	1	68	30	2	0	65	25	7	2	73	22	3	2
131	29253	59	40	1	0	65	34	1	0	67	29	3	1	71	25	3	0	74	21	3	2	79	17	3	1
132	29263	55	44	1	0	59	40	1	0	67	29	4	l	71	23	5	l	74	18	6	3	80	15	4	1
133	29274	56	44	1	0	59	40	l	0	65	31	3	1	69	26	4		73	21	5	2	80	15	4	1
134	29276	52	47	1	0	63	37	1	0	63	32	4	0	70	26	3	0	74	18	5	2	78	17	4	2
135	29282	60	40	0	0	63	37	0	0	70	27	3	0	72	24	4	0	74	21	4	1	79	16	5	1
136	29313	62	36	2	0	64	34	2	0	73	23	3	1	74	21	4	0	67	24	7	1	71	19	8	2

п/п	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) –	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0
	тищеке	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
137	29328	58	41	1	0	62	36	1	0	72	24	3	0	74	23	2	0	70	24	4	3	75	17	5	3
138	29332	55	43	2	0	60	39	1	0	68	27	4	1	70	26	3	1	68	23	6	3	73	19	6	1
139	29348	61	38	1	0	63	37	1	0	70	26	3	1	71	25	4	0	71	22	5	2	75	17	5	2
140	29355	58	39	2	0	61	38	1	0	69	26	4	1	71	25	3	1	74	17	6	3	75	18	4	3
141	29363	54	45	1	0	57	42	1	0	66	31	3	0	69	26	4	1	72	19	5	4	79	15	4	2
142	29367	55	43	1	0	60	38	1	0	66	31	3	0	67	28	4	0	71	21	5	3	75	20	3	2
143	29374	56	44	1	0	58	41	1	0	66	31	3	0	69	26	4	1	72	21	5	3	80	15	4	2
144	29379	65	34	1	0	70	30	0	0	72	24	4	0	76	21	2	0	80	15	3	2	80	15	3	1
145	29401	63	36	1	0	66	33	1	0	74	22	4	1	75	24	2	0	64	25	7	3	77	20	2	1
146	29405	65	33	2	0	66	32	2	0	79	18	2	1	79	19	2	0	73	21	5	2	74	20	5	1
147	29418	66	33	1	0	65	34	1	0	77	20	2	0	77	19	3	0	71	22	5	3	73	19	5	2
148	29430	57	40	2	1	58	40	2	0	73	22	4	1	73	22	4	1	70	22	6	2	73	19	4	3
149	29456	55	43	2	0	59	39	2	0	67	30	2	1	70	24	5	1	71	21	6	3	76	18	4	2
150	29464	59	40	1	0	58	40	1	0	71	26	2	1	69	26	5	0	67	25	4	4	75	18	5	1
151	29467	64	35	1	0	64	36	0	0	72	24	3	0	71	24	4	0	70	21	6	2	75	18	5	2
152	29471	59	40	1	0	62	37	1	0	67	29	3	1	70	26	3	1	70	21	5	3	77	18	3	2
153	29477	70	30	0	0	71	28	1	0	74	22	3	1	76	22	2	0	73	19	6	2	77	15	5	2
154	29481	70	29	0	0	71	28	1	0	72	25	3	0	78	19	3	0	76	18	5	1	78	16	4	2
155	29485	67	33	0	0	68	31	1	0	71	26	3	0	75	21	4	0	75	19	4	3	78	17	3	2
156	29500	72	28	0	0	75	23	1	0	83	14	2	1	84	15	1	0	75	18	5	1	77	17	5	2
157	29508	72	27	1	0	71	27	1	0	84	13	2	1	84	15	1	0	77	16	5	2	76	19	4	1
158	29524	63	36	1	0	68	31	1	0	76	22	2	0	77	20	3	0	72	21	5	2	74	18	6	1
159	29532	63	35	1	0	60	38	2	0	70	25	4	1	75	21	3	1	67	24	7	2	73	21	5	1
160	29536	51	48	1	0	58	40	1	0	66	31	3	0	71	25	4	1	66	25	6	2	72	21	5	1
161	29539	54	44	1	0	60	37	3	0	68	27	5	0	74	21	4	1	68	23	6	3	72	21	5	1
162	29540	69	30	l	0	73	26	1	0	73	23	4	1	78	18	3	l	72	20	6	3	76	18	3	2
163	29541	51	48	I	0	55	43	2	0	64	30	5	1	68	27	4	1	64	24	8	4	71	23	5	1
164	29548	48	49	3	0	62	37	1	0	63	31	5	1	73	23	3	l	64	25	7	5	73	21	4	1
165	29551	65	34	1	0	62	37	1	0	72	23	4	I 1	75 70	20	4	l l	71	20	5	3	74	19	6	2
166	29552	61	38	2	0	61	38	2	0	68	27	4	1	70	25	4	l	68	22	7	3	73	20	5	2
167	29553	55	44	I	0	57	41	1	0	69 75	27	3	0	69	27	4	0	71	22	5	1	74	19	4	2
168	29557	71	28	1	0	72	28	1	U	75 72	22	3	1	73	22	4	I	67	25	7	1	72	20	6	2
169	29558	72	27	0	0	72	28	0	Ü	73	24	2	0	72	24	4	0	65	23	8	3	70	22	5	4
170	29561	67	31	1	0	66	33	I I	0	75	21	3	0	72	24	3		72	19	6	2	75 74	16	5	4
171	29562	58	42	0	0	60	39	1	0	65	31	4	1	67	29	4	0	66	23	- /	3	74	19	5	2

																					прод	лжен	ие тас	лицы	C.I
Π/Π	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 10	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0	0.0 -	-0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0
	индекс	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
172	29563	51	49	1	0	55	44	1	0	58	36	5	0	61	34	4	0	62	28	7	3	72	21	5	1
173	29566	59	40	2	0	60	38	2	0	61	33	5	1	67	28	4	1	64	24	7	4	73	21	4	2
174	29570	64	35	1	Ö	64	35	$\frac{1}{1}$	0	67	28	4	1	70	26	3	1	70	22	5	3	76	18	4	2
175	29576	62	37	1	0	64	35	1	0	65	31	3	1	69	25	5	1	68	24	6	1	72	19	6	2
176	29578	70	29	0	0	68	31	0	0	70	27	3	1	71	25	3	0	67	25	5	3	72	19	7	2
177	29581	76	23	0	0	77	23	0	0	80	18	2	0	79	18	2	0	77	18	3	1	78	16	4	2
178	29587	66	34	1	0	67	33	1	0	70	26	4	0	70	26	3	0	68	25	5	3	69	21	5	4
179	29602	65	33	1	0	68	30	2	0	80	18	2	0	82	16	1	0	72	20	5	2	78	17	4	2
180	29605	67	31	1	0	72	26	2	0	82	15	2	1	83	15	2	0	74	18	6	3	77	17	4	2
181	29612	69	30	1	0	71	27	2	0	82	15	2	0	83	15	2	1	75	20	3	1	80	14	3	2
182	29613	63	36	1	0	65	33	1	0	81	16	2	0	80	17	2	0	74	19	5	2	75	17	5	3
183	29614	61	38	1	0	67	32	1	0	81	15	3	1	82	16	2	0	76	16	6	2	80	15	3	2
184	29624	63	35	1	0	64	35	1	0	79	18	3	0	80	16	3	0	75	19	4	2	75	18	4	3
185	29625	65	34	1	0	67	31	2	0	78	19	3	0	82	14	3	0	76	16	5	2	77	17	5	2
186	29626	65	34	1	0	68	31	1	0	79	18	2	0	81	17	3	0	75	18	5	2	76	17	5	2
187	29630	66	33	1	0	66	32	1	0	79	18	2	1	81	17	2	0	77	16	5	2	76	18	5	2
188	29631	62	36	2	0	65	33	1	0	74	22	3	1	78	18	4	0	73	21	4	2	73	19	6	2
189	29632	58	41	1	0	63	35	2	0	74	22	4	1	75	20	4	1	72	20	5	3	73	19	5	4
190	29634	62	37	1	0	64	34	2	0	77	20	2	1	78	19	3	1	75	17	5	3	74	16	7	2
191	29635	60	39	1	0	66	32	2	0	79	18	3	1	80	17	3	1	76	16	5	3	75	17	6	2
192	29636	60	39	1	0	62	36	2	0	73	23	4	0	76	19	4	0	72	21	5	2	73	20	5	1
193	29637	60	39	1	0	62	36	2	0	77	19	4	1	77	20	2	0	73	19	4	4	75	18	6	2
194	29638	63	37	1	0	65	34	2	0	77	19	3	1	80	17	3	0	74	18	5	3	74	18	5	2
195	29641	59	40	2	0	62	35	3	0	75	20	4	0	77	19	4	0	72	20	5	3	75	17	5	2
196	29642	60	39	1	0	60	38	2	0	74	21	4	0	76	20	3	0	71	20	6	3	75	17	5	2
197	29644	72	27	l	0	72	26	1	0	79	17	3	0	82	14	3	0	78	15	5	3	76	17	5	3
198	29645	61	37	I	0	61	38	1	0	75	21	4	0	76	21	3	0	69	22	6	3	72	21	5	2
199	29649	56	41	3	0	59	38	3	0	72	23	4	I	73	22	4	1	70	20	5	5	75	18	4	3
200	29653	78	22	0	0	78	22	0	0	77	21	1	0	75	22	3	0	67	25	7	2	73	19	5	2
201	29654	43	50	6	1	47	46	6	1	62	26	10	2	64	24	9	3	61	26	9	5	69	19	8	4
202	29662	69	31	0	0	68	32	1	0	72	26	2	1	72	24	3	0	67	25	6	2	74	18	6	1
203	29664	80	20	0	0	79	20	0	0	77	21	2	0	78	20	2	0	75	16	7	2	76	17	4	3
204	29675	65	34	1 1	0	77	23	1	0	64 75	29	6	1	68 74	28	4	1	62 67	25	10	4	73	19	6 5	2
205	29676	77	22	1	0	78	22	0	0	75	21	3	1	74	21	4	1		21	7	4	70	22		4
206	29701	68	31	2	0	72	27	1	0	80	16	3	1	82	15	2	0	73	18	5 5	3	81	15	4	1
207	29702	68	30	l	0	74	24	2	0	83	14	2	1	84	13	2	I	79	15)		80	16	3	1

Продолжение таблицы С.1

п/п	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0) —	> 1	0.0
	тищеке	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
208	29706	73	26	1	0	78	20	1	0	83	14	3	0	85	11	3	1	78	16	4	2	79	15	4	1
209	29708	74	25	0	0	78	21	1	0	83	14	3	0	84	14	2	0	78	16	4	2	78	17	3	2
210	29712	68	31	1	0	76	23	1	0	82	16	2	0	84	14	1	0	77	19	2	1	78	16	5	1
211	29716	72	28	0	0	74	25	1	0	83	14	2	0	84	13	3	1	79	15	5	1	80	13	5	2
212	29722	66	34	1	0	67	32	1	0	80	16	3	0	81	15	3	0	76	18	5	2	77	17	4	3
213	29723	68	31	1	0	70	29	1	0	79	17	3	1	81	16	3	0	74	18	6	1	75	18	5	2
214	29724	65	34	1	0	68	31	1	0	80	16	4	0	81	15	2	1	78	16	5	2	78	15	5	1
215	29726	64	36	1	0	69	29	2	0	79	17	3	1	81	15	3	0	74	18	5	2	76	18	3	2
216	29730	58	41	1	0	65	33	2	0	77	19	3	1	79	17	3	0	77	17	4	2	73	18	6	3
217	29735	59	41	1	0	66	33	2	0	74	20	4	1	78	19	3	1	73	20	5	2	74	17	7	2
218	29736	63	35	2	0	66	32	2	0	79	17	3	1	78	17	4	1	78	15	4	2	75	17	4	3
219	29741	72	27	0	0	72	27	0	0	78	19	3	0	79	18	2	0	76	18	5	1	75	18	5	2
220	29745	66	33	1	0	71	28	1	0	75	23	3	0	76	20	4	0	73	20	5	2	74	19	5	1
221	29749	66	32	2	0	66	32	1	0	76	22	1	0	76	19	4	0	72	18	5	4	76	18	5	2
222	29752	36	45	14	4	41	41	14	4	54	29	10	6	52	29	11	7	53	28	13	4	59	26	10	4
223	29756	88	12	0	0	90	9	0	0	83	15	2	0	82	16	2	0	70	20	6	6	75	18	5	1
224	29759	53	41	5	1	51	43	5	1	65	26	7	2	62	27	9	2	60	28	9	4	68	22	6	4
225	29761	84	15	0	0	85	14	0	0	83	15	2	0	80	17	2	0	73	17	7	3	76	18	4	2
226	29766	77	23	0	0	77	22	1	0	76	21	3	0	76	21	2	0	74	19	5	2	73	19	5	3
227	29768	82	17	1	0	82	17	1	0	80	18	2	0	79	18	2	1	75	17	5	2	74	18	5	3
228	29771	52	40	8	0	56	37	7	0	59	29	10	2	64	26	9	1	61	26	9	5	68	20	8	3
229	29772	58	37	4	0	60	35	4	1	65	26	7	2	68	24	7	1	62	24	9	5	67	23	6	3
230	29789	85	15	0	0	81	19	0	0	72	25	2	I	69	25	4	l	53	32	9	5	58	27	9	6
231	29802	69	30	l	0	78	21	1	0	80	17	2	0	82	16	2	1	75	18	5	2	81	15	3	0
232	29807	79	20	1	0	83	16	l	0	84	14	2	0	86	12	2	0	77	15	5	3	87	10	2	
233	29808	73	26	l 1	0	79	21	1	0	80	18	2	0	84	15	1	0	73	20	4	4	83	14	2	0
234	29813	72	27	1	0	79	21	0	0	82	15	3	0	84	13	2	0	80	14	5	1	83	11	5	1
235	29814	73	26	0	0	77	22	1	0	83	14	2	1	84	13	3	0	81	14	4	1	79	14	4	3
236	29816	67	32	1 1	0	75 75	24	1	0	79	17	4	0	81	16	3	0	74	20	4	2	80	15	4	1
237	29822	73	26	1	0	75 71	24	1 2	0	84	13	3	0	83	14	2	0	81	13	5	2	80	15	4	1 1
238	29823 29827	64	34	2	0	71	26	3	0	80	15	3	1 1	82	14	3	0	77	16	4	3	79 91	15	3	2
239		72 50	28	1	0	73	26	1 2	U	83	14	2	1 1	83	13	2	1	81	13	4	2	81	15	3	2
240	29832	59 61	37	4	0	66	32	3	U	76	20	3	1 1	78 77	18	4	0	72	20	5	2	76	18	5	2
241	29836	61 71	36	3	0	66 74	32 25	2	0	76	20	4	1 1	77 83	19	3	0	72 79	21	5	1	77	16	5 5	2
242	29837	71	28	I	0	/4	25	I	U	83	14	2	1	83	14		0	79	15	4	2	81	14)	1

				• 0											400						- ' '	жени			
Π/Π	Индекс	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0	0.0 -	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0	0.0	- 0.1	2.0 -	- 4.0	5.0 –	10.0	> 1	0.0
	тидеке	ноч	ден	НОЧ	ден	ноч	ден	ноч	ден	НОЧ	ден	НОЧ	ден	ноч	ден	НОЧ	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден
243	29838	63	35	1	0	66	32	2	0	80	17	2	1	80	17	2	1	74	19	5	3	77	16	5	2
244	29846	63	35	2	0	63	35	2	0	76	21	3	0	74	21	4	0	75	15	5	4	72	20	6	3
245	29848	59	37	3	0	64	33	2	0	72	22	4	1	75	21	4	1	71	19	7	3	73	19	6	2
246	29849	56	39	4	0	59	36	4	1	69	24	6	1	70	23	5	2	69	20	7	4	70	20	6	3
247	29854	53	42	4	1	55	40	5	0	67	26	6	2	64	28	7	1	68	21	7	5	66	23	7	4
248	29858	53	42	4	1	56	39	4	1	63	28	6	3	63	26	8	2	62	28	6	3	65	21	9	4
249	29862	88	11	0	0	88	11	0	0	87	12	1	0	83	14	3	0	77	16	3	4	73	19	7	1
250	29864	93	7	0	0	91	9	0	0	89	9	1	0	86	11	2	1	72	20	6	2	75	17	5	3
251	29866	84	15	1	0	84	16	0	0	83	14	2	0	79	17	3	0	76	17	4	3	73	20	5	3
252	29869	74	24	1	0	75	23	2	0	74	20	4	1	74	21	4	2	70	21	5	3	66	22	7	4
253	29870	74	25	0	0	76	23	1	0	77	20	3	1	76	19	4	0	74	18	6	2	74	19	4	3
254	29874	74	25	1	0	71	28	1	0	73	23	3	1	74	21	4	1	72	21	5	3	68	22	5	4
255	29876	67	31	2	0	67	31	2	0	69	23	7	1	67	24	6	2	68	20	7	5	65	21	9	5
256	29915	75	24	0	0	77	22	1	0	83	15	2	0	83	14	3	1	76	20	2	1	81	14	3	2
257	29916	74	26	0	0	75	24	1	0	80	17	3	0	82	15	3	0	77	18	4	2	81	15	4	0
258	29923	66	33	1	0	70	28	2	0	80	17	2	1	82	15	2	1	77	17	4	3	79	14	4	3
259	29928	64	35	1	0	69	29	1	0	75	20	4	1	79	17	3	0	75	18	5	3	79	16	3	2
260	29936	61	34	4	0	63	32	4	0	75	19	5	1	74	20	4	1	72	20	5	2	73	19	5	2
261	29937	68	30	2	0	71	27	2	0	81	15	4	1	80	16	4	0	77	17	3	3	77	16	4	3
262	29939	65	31	4	0	68	27	4	0	73	21	5	1	74	20	5	1	71	23	4	2	73	19	6	2
263	29941	64	34	1	0	66	33	1	0	72	24	4	0	75	21	3	1	73	19	6	2	73	20	5	1
264	29946	63	31	6	1	62	30	7	1	71	21	6	2	67	21	8	3	72	20	5	2	71	16	9	4
265	29947	73	25	2	0	75 50	23	2	0	78	17	4	1	78	16	4	1	76	16	5	2	77	15	5	3
266	29954	57	38	5	1	58	35	5	1	66	25	7	2	64	26	7	2	68	24	5	3	68	20	7	4
267	29955	62	35	3	1	61	35	4	1	68	23	7	2	65	25	7	4	66	23	7	3	64	25	8	3
268	29961	89	10	0	0	86	13	0	0	84	14	2	0	82	14	3	1	74	18	5	3	69	22	5	3
269	29962	83	17	1	0	81	19	1	0	79	17	3	1	75 72	19	4	1	72	19	4	5	67	22	6	4
270	29963	77	22	0	0	74	26	0	0	74	22	3	1	72	21	4	2	63	25	8	5	66	21	8	3
271 272	29974	56 76	37	6	1	58 82	34	6	1	54 91	33	9	3	58 85	28	10	4	52 77	30	12	6	56	25 13	11	8
272	35053 35067	76 75	22 24	2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	82 80	17 19	1 1	0	81 82	15 16	3 2	0	85 87	13	2 2	0	78	15 14	5 4	2 3	86 87	10	2	0
274	35067 35069	64	34	2	0	75	24	1 1	0	82 78		3	0	85	11 14	1	0	76	17	5		86			1
274	35078	66	32	2 2	0	73 78	21	1 1	0	81	19 16	2	0	85	14	1	0	75	17	6	2 2	85	12 13	2	0
276	35078 35085	69	28	2	0	78 79	20	1 1	0	78	17	4	2	85	14	1	0	73	18	6	4	83	16	$\frac{2}{2}$	0
277	35173	67	30			78	21	1	0	81	15	3	1	85	13	1		76	17	5	2	86	12	2	0
277	35173 35191	69	30 29	2 2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	78 80	20	0	_	78	16	3 4	2	83 84	13	1 1	0	76 74	18	5	3	86 84	14		1
210	33191	09	29		U	90	20	U	0	70	10	4		04	14	1	U	/4	10	<u> </u>		04	14	1	1

Продолжение таблицы С.1

		0.0	0.1	2.0 - 4.0		5.0 – 10.0		> 10.0		0.0	0.0 - 0.1		2.0 - 4.0		5.0 – 10.0		> 10.0		0.0 - 0.1		2.0 – 4.0		5.0 – 10.0		> 10.0	
п/п	Индекс	0.0 -						1								1								1		
		НОЧ	ден	ноч	ден	ноч	ден	ноч	ден	ноч	ден	НОЧ	ден	НОЧ	ден	ноч	ден	ноч	ден	НОЧ	ден	ноч	ден	ноч	ден	
279	36001	80	19	1	0	82	17	0	0	84	12	3	1	86	12	1	0	79	14	4	2	85	13	2	0	
280	36003	74	24	2	0	77	23	1	0	80	16	4	1	83	14	2	0	76	18	4	2	83	14	2	1	
281	36015	72	27	0	0	77	23	1	0	81	16	2	0	81	17	2	0	79	16	3	1	84	13	3	0	
282	36020	64	36	0	0	69	29	1	0	77	19	3	1	81	16	3	0	73	23	3	1	81	16	3	0	
283	36021	75	25	0	0	78	21	1	0	83	15	2	0	83	14	3	0	78	16	4	1	84	14	2	1	
284	36022	67	32	1	0	71	27	2	0	82	14	4	0	81	15	3	1	78	17	4	1	82	15	2	1	
285	36024	65	34	1	0	72	27	1	0	77	19	4	1	79	18	2	1	73	20	5	2	80	15	3	1	
286	36028	74	25	1	0	79	20	1	0	82	15	3	0	86	11	3	0	76	19	4	2	83	13	3	0	
287	36032	69	29	2	0	73	25	1	0	79	16	4	1	81	16	3	0	74	17	5	3	76	21	2	2	
288	36033	69	29	2	0	72	26	3	0	80	15	4	1	80	17	3	0	75	17	5	3	79	14	5	2	
289	36034	75	24	1	0	78	21	1	0	83	14	3	0	84	13	2	1	78	18	3	2	77	17	3	2	
290	36036	74	24	2	0	77	21	2	0	76	18	4	2	77	19	4	0	73	20	5	3	75	19	4	2	
291	36038	65	29	5	1	67	27	5	1	76	18	4	2	78	16	4	2	73	19	5	4	75	18	4	4	
292	36041	70	27	2	0	71	28	1	0	75	20	4	1	77	18	4	1	74	18	5	3	74	21	3	2	
293	36044	71	27	2	0	73	25	1	0	77	18	4	2	77	19	4	0	74	18	5	3	76	18	4	2	
294	36045	80	18	2	0	78	20	2	0	74	18	6	2	74	18	6	2	69	21	6	3	67	24	6	3	
295	36047	79	19	2	0	82	16	2	0	73	18	6	2	75	18	5	2	65	21	9	5	72	21	5	2	
296	36052	77	21	2	0	75	22	2	0	75	19	5	1	74	19	5	2	68	20	8	4	72	19	5	4	
297	36055	74	23	3	0	75	22	2	1	71	22	5	2	72	20	5	3	64	22	9	5	69	20	7	3	
298	36057	84	15	1	0	87	12	1	0	74	19	6	1	77	18	4	1	57	28	9	6	65	25	7	3	
299	36058	87	13	1	0	85	14	1	0	77	18	5	0	75	20	4	1	58	26	11	4	66	24	7	3	
300	36061	66	30	3	0	66	28	6	0	69	24	5	2	67	22	8	2	64	24	8	2	67	23	7	3	
301	36064	75	23	2	0	73	24	3	0	69	21	7	2	68	20	7	4	59	26	11	5	61	25	10	4	
302	36074	79	21	0	Ō	74	26	1	Ö	73	23	3	1	69	25	4	1	55	30	11	5	57	28	10	4	
303	36083	88	12	0	0	87	13	0	0	87	11	2	0	86	10	3	1	68	24	6	2	70	21	5	5	
304	36091	78	22	0	0	77	22	1	0	83	15	2	0	82	15	2	1	67	25	7	1	66	24	7	3	
305	36092	77	23	Ö	Ō	77	23	0	Ö	85	13	$\overline{2}$	Ŏ	86	12	2	0	75	17	5	3	74	18	5	2	
306	36096	84	16	Ö	Ō	85	15	Ö	Ö	90	8	1	0	91	8	$\frac{1}{1}$	Ō	81	14	4	0	78	16	4	$\frac{1}{2}$	
307	36103	78	22	Ö	0	78	22	0	0	80	19	1	Ö	78	19	2	1	68	24	7	1	70	20	8	$\frac{1}{2}$	
308	36104	85	14	0	ő	84	15	ő	ŏ	87	10	3	ő	86	11	$\frac{2}{2}$	1	79	13	5	2	76	16	5	$\frac{2}{2}$	
309	36213	94	6	ŏ	ŏ	93	7	ő	ŏ	86	12	2	ŏ	80	17	$\frac{1}{2}$	0	70	21	7	$\frac{1}{2}$	74	19	5	1	
310	36229	81	17	ĭ	ĭ	87	12	ĭ	ŏ	78	15	5	ĭ	80	16	3	ĭ	63	25	8	3	73	19	6	2	
311	36231	90	10	1	0	89	11	1	ŏ	84	14	2	1	82	15	3	0	65	25	7	2	69	24	5	3	
312	36237	85	15	0	0	85	14	0	ŏ	83	13	3	î	78	17	4	ĭ	70	23	5	2	70	21	7	2	
313	36259	96	4	ő	ŏ	94	5	ő	ŏ	96	4	0	0	92	7	1	0	85	14	1	$\begin{bmatrix} \bar{1} \end{bmatrix}$	82	15	2	$\bar{1}$	
314	36442	74	25	1	0	75	24	1	ő	70	24	5	0	67	26	6	1	61	29	7	2	66	25	6	4	
217	30774	/ ¬	43	1	U	13	∠-†	1	U	70	∠¬r	J	U	07	20	U	1	UI	4)	,		00	43	U		