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Abstract 
 

        This paper deals with an approach, which allows constructinglarge-scale 

weather models as well as the modals of the global size.  The construction of such 

models is being realized on the basis of average risk minimization method,   using 

regular data.     The scheme of representation of the initial data, which allows ob-

taining stable relations,   connecting physical parameters in space and time is 

.described. The comparison of the suggested approach   relative to the hydro dy-

namical approach is considered.   Perspectives of the applying of the approach in 

practice are discussed.  The results of the of the one-step prediction of the global 

temperature are presented.    
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INTRODUCTION 

 

       Up-to-date global models of weather prediction in most cases are carried out 

using hydrodynamic approach. This means that for solving the problem of global 

atmospheric prediction, as well as for constructing of the global monitoring sys-

tems, are used hydrodynamic equations with subsequent applying   of the   finite-

difference methods. However, the very original system of partial differential equa-

tions represents a certain idealization of the processes occurring in nature. This 



idealization takes place whenever such quantities as derivatives, gradients or densi-

ty obtained as a result of the limiting process are attributed to the physical mean-

ing. To simplify the description of the physical world around us, this idealization 

within hydrodynamic approach seems quite natural and in fact inevitable [1]. 

       Moreover, the use of differential equations for modeling purposes implies the 

boundary conditions to be known and given as continuous functions, which in 

practice of the weather forecasting are not available. Overcoming these obstacles 

inevitably lids to the costs, which far and away exerts negative influence on the re-

sult. This requires a change over switch  to discreet  data and to finite-difference 

representation of derivatives of the function, in addition to the development of me-

thods for solving systems of finite-difference  equations 

       In fact, when  model of the  hydrodynamic prediction is being created, one 

may observe  double transition in the forward and reverse: first we idealize reality, 

making thus the differential equations,  then, starting from these equations, we pass 

to the discrete case and consider the finite-difference equations,  which  as a result  

lead us to the system of  algebraic equations. In circumstances where the original 

information represent the discrete data, such a transition may not arise  much op-

timism. Moreover, it arises the desire to start the construction immediately from 

algebraic systems, using data obtained directly at the points of observation and to 

look for the solution itself in the continuous form. Especially as practical solutions 

in the form of continuous functions are most preferable. The ability to create such a 

model would allow us to talk about the general empirical approach for modeling, 

based entirely on observational data. Such an approach would allow us, if 

experimental base isavailable, to simulate the processes of global scale and predict 

physical fields without involvement of the partial differential equations. For 

realization of such an approach one needs only two conditions: the first - a 

recovery mechanism, which would allow determining the functional relationships 

using experimental data, the second - the availability of data that meet certain 

requirements. 

 



 

RECOVERY OF THE FUNKTIONS USING EXPERIMENTAL DATA     

 

       The problem of the recovery of the unknown functions using experimental da-

ta is widely presented in literature.  We will not stay to long on the problem, as-

suming that ifmechanism of solving the problem exists and if the data meeting cer-

tain requirements are available, the problem may be effectively solved. In practice, 

in order to restore the function one should carry out the following steps: 

a.  tobuild up the matrix X (N, n) and the vector Y (N) (lines – situations, columns 

- parameters). Y- column representing the known values of the unknown function. 

b.  to build up a functional representing average risk. In case when the mean square 

error is minimized, it looks as follows: 

                                         (1) 

 

  

c.  to obtain average risk estimation, which is no longer dependent on an unknown 

probability density P (x, y) 

                                  

                             (2)                              

 

d.  to find minimum of the  average risk estimation (2) for all  the samples of the 

original  situations (X, Y), and for all types of functions belonging to a given class, 

or group of classes. As a result, we will have a function , 

 

                                   

,                                   (3)                    

 

  

which approximates in some of the best ways the unknown relationship. 

       The up-to-date methods of recovery of the continuous functions formally fit 



into the above three steps. Differences may consist in using estimate (2) only, 

which can be obtained both theoretically [2], as well as by means of experimental 

data [3.4]. Hereinafter, to confirm the effectiveness of the proposed approach, 

while minimizing (2), we use the approach based on the data, and the minimization 

of this estimation (2) is carried out by using exhaustive search algorithm [5], which 

allows to reach the point of extreme of the (2) within a reasonable time. 

Limitations in this case can be associated with the size of aggregatesonly, which 

should includenot more than 12-13 parameters. However, dealing with practical 

problems, such limitation does not present very strong restriction, while the most 

of the physical laws are associated, with a small number of variables. Note that 

exhaustive search involves not only the measured parameters, but also the values 

of the functions  of these parameters. The number of such values, in order to 

achieve a deeper extremum must exceed many times the number of input 

parameters. 

       In practice, however, there is no need to use the wide variety of classes of 

functions for approximation purposes, as soon as the polynomial with integer 

powers approximates any continuous function with any desired accuracy. The main 

requirement is that the power of parameters and coefficients by the monomials 

provide minimum for the average risk estimation (2). Thus, substituting into the 

functional (2) a polynomial of the highest possible power 

 

 

                          

after optimization we will have some other polynomial, substantially more simple, 

in which  coefficients,   represent rational numbers, which can also take 

zero values. Thus, each factor  may be part of some monomial with 

any integer power , satisfying the inequality 

 

 



                                       

where n – is maximal  power  of the polynomial. The last two points are essential 

as soon as they express the difference between the considered polynomial 

approximation, and the ordinary polynomial regression. In fact, presence of any of 

the original parameter in the monomial with zero power means its absence there 

and zero values by someof the polynomials means that corresponding monomials 

are spurious. The optimization process with the help of a polynomial may be 

regarded as expansion of the function in series of monomials, where order, 

composition and the very number of monomials are being defined by average risk 

criteria. 

 

 

GLOBAL MODELING AND DATA REPRESENTATION 

 

 

       Let us discuss the data problem in greater detail. In which form the data should be presented 

in order that the restored function, adequately described the process. Firstly, if we represent this 

data in the form of matrixA (N, n + 1), where the lines - situations and columns - parameters, it 

should be elongated in the vertical direction. In other words, the number of lines must be at least 

several times larger than the number of columns. The total size of the matrix must match the 

complexity of the restored function. If the function to be restored is presumably complicated, the 

matrix sizes must be increased. However, the main requirement to representation of datais that 

all the lines of the matrix A should be obtained randomly and independently according to some 

unknown, but fixed density distribution P (x, y). Obviously, when setting targets of atmospheric 

modeling, the latter condition can be satisfied only with strained interpretation, as soon as the 

weather situations are coming neither by accident nor independently, but in chronological order. 

Taking into account that the atmosphere is permanently exposed to exterior influences, the 

assumption of statistical independence of the initial situations can be done only conditionally. 

        

 

In general, the problem can be informally presented as follows: we have a global information, 

measuredat a certain time interval (time series), you need to restore the space-time dependence, 

which would approximate the processes with allowable accuracy, not only within this time pe-

riod, but also beyond the bounds of the interval. 



         But how to summarize all the available global information? How to take into account all 

the experience of nature accumulated in time series, which are available for modeling at present? 

Within the initial time series we consider two types of situations: the first type - large situations, 

consisting of parameters measured at a certain time-point, the second type, - small situations, 

consisting of a set of measurements in a single geographic point.  Obviously, the situation of the 

first type consist of the situations of the second type, the number of which can be very large. 

Direct use of the first type situations for the restoration of the unknown function is unacceptable 

because of the enormous size of the situation, in view of relatively small number of such 

situations in time series. At the same time, the number of variables and the number of large 

situations may exceed hundreds of thousands or even more.  Matrix A in this case is stretched 

both in length and in width. Such a representation of initial data must necessarily lead us not 

only to the necessity of operating with singular matrices, but also to a serious loss of information 

due to its inefficient use. 

       Nevertheless, we will try to use all available information to the extent that can be useful for 

modeling. For this purpose, as the lines of the original matrix A, we consider the small situation, 

representing a set of measurements at the point, and the equation for determining the  

approximation function 

,                    

 

 

we will write out for all of these points. That instantly solves the problem of the relation of the 

parameters and situations in the source data. However if we take all situations  representing syn-

chronous  layers in succession (in chronological order), then the distribution of situations, each 

of which represents a set of measurements in a single geographic location, may occur to be very 

complicated, and that  will undoubtedly entail the complication of the restored function itself. 

However, the complexity of the functions obtained in the conditions of measurement errors, 

which always take place in the experimental data, cannot be regarded as a positive factor. 

       To simplify the distribution of the situations, representing measurements in a single geo-

graphic point, we will use cyclical nature of the atmospheric changes. 

       Suppose we have a long-term series of the global data measured every hour, and we are 

going to predict weather one hour ahead. For this purpose, we obviously need to do one-step 

forward. Let us fix a certain hour, day and month in the time series, and all the other samples of 

this series remove from it. As a result, the number of remaining situations will be many times 

smaller than the original number. Obviously, the multivariate distribution of thus obtained  series 

is much simpler, because it has no daily, monthly or seasonal cycles. However, the number of 



situations, each of which represents a geographic location is still very high, since even a tempo-

rary one synchronous layer may correspond to tens of thousands of such situations. We can 

therefore expect that basing on the formed in such way situations;  one may obtain stable solu-

tion, which would allow predicting the weather element one-step ahead. 

       From the computational point of view, the desired effect is evident. Namely, we have many 

situations (many experiments), and relatively few parameters. This guarantees us on the one 

hand the lack of computational difficulties associated with the handling of singular matrices, and 

at the same time, the possibility to use all the information of the original series. However, using 

synchronous situations, measured at some regular points in time, contradicts to the classical 

formulation of the function recovery problem, which requires the situations to be chosen acci-

dently and independently. Indeed, the situations corresponding to a certain date (large situations) 

connected with each other not only by time, but by space as well, so that corresponding small 

situation could not be considered as statistically independent. However if we take into account 

that the requirement of independence is only associated with estimation of the results of 

modeling, the obstacle can be largely surmounted by using the group method of sliding control. 

SLIDING  CONTROL 

       Sliding control (or jack-knife method) which consists in successive exclusions and 

inclusions of the situations  out of the learning sample  and calculating errors on this  situations 

as on the independent material, is known a long time ago (see., E.g. [6]). However, for a long 

time, this procedure could not find a proper application in modeling because of the large amount 

of computations required for its realization.  In fact, the sliding control could only be used for 

estimation of the result, but not for minimization of the average risk estimations. The compact 

formula, which allows estimating the average risk in the conditions of the great arrays of digital 

information presented in [3]. There was also obtained a formula for realization of the group 

sliding control 

, 

where 

 

which can also be used for the estimation of  average risk. Here, the internal summation is 

carried out according to the number of elements in group, external – according to the number of 

groups, B- covariance matrix obtained for all situations, K- matrix of the excluded situations 

(n× r). 

       Originally, the purpose of obtaining this formula was first of all  to reduce the computation 



time required for minimizing the average risk. Indeed, according to this formula, the inversion of 

B is carried out only once, and subsequentlymatrix Bis only corrected. Nowadays computer time 

is not of such a sacramental significance as previously, but the obtained formula gains in this 

case, a new, deeper meaning. By using sliding group control, when each group consists of 

synchronous situation only, we will be able to obtain the results of the constructions not only for 

each individual situation, but for groups of situations, which can be in first approximation 

considered as statistically independent. Scattering the groups of situations at a certain distance 

with respect to time, it is possible to achieve a greater degree of group independence, than in the 

case,when groups in matrix follow one after another in a chronological order. As a result, we 

have the initial material for functions recovery in the form of independent groups of situations, 

and this is the basic requirement for statistical estimation of the results of the constructions. 

                                                   ANALOGY 

 

Screening in such a way the initial series of global observations we can restore the 

other functions for one step prediction of the other elements .  As a result, we 

have the formula 

 ,                           (4)   

where    ,   andthetime may accept discrete values belonging to the 

interval of the prehistory of the corresponding processes. Having thus prognostic value 

of , we have the opportunity to make a new step forward and thus to obtain a new 

prognostic values. Thus, after obtaining of the next group of the predicted values, we have to car-

ry out again the screening of a of the initial time series elements, and thus, based on a simplified 

distribution to find new functions for each of the parameters to be predicted. 

       Note that if in the equations (4) to put , we will have only three values of a discrete-

time, and in this case, the analogy with hydrodynamic patterns can be traced most clearly. In-

deed, formula (4) in this case corresponds to the prognostic formulas in numerical hydro dynam-

ical schemes, in which the time derivative is represented in central difference form. In the empir-

ical approach, the initial prehistory interval, which in hydrodynamic schemes is usually fixed, 

one should specifylong enough, giving the possibility for the average risk criterion to choose the 

best option. Obviously, the initial prehistory interval must be consistent with the scale of the 

processes under consideration and, accordingly, with the time step. In real models, this step must 

be chosen according to the actual conditions of the collection and processing of the information, 

taking into account the scale of the process under consideration. For the elements of weather to 

be forecasted for the month, season or year, the time step can be selected large enough, and if the 



forecast is considered to be up to ten days, a step should be chosen as low as possible, but not 

less than the interval of measurements. 

       A distinctive feature of the hydrodynamic approach, compared with the empirical approach, 

can be illustrated by a simple example. Assume that the system of hydrodynamic equations re-

duced to one equation with one unknown variable that under certain assumptions is possible. 

Then, carrying over the partial derivative of the forecasting parameter with respect to time to the 

left side of the equation, and to the right side - all the other terms of the equation, from which 

this derivative may depend, wecan write 

)(XA
t

T
 ,        

Where X  - avector, а A the differential operator, which may include convective terms and 

some other combinations of derivatives and parameters. Presentingthis equation in finite-

difference form, we will have 

),(XA
t

TT ttt  

where A    - finite-difference operator corresponding to differential operator. Then, leaving the 

predicted variable in the left side and transferring all the rest to the right side, we will have the 

expression )(XAtTT ttt , 

which allows to make a step forward with respect to time. The principal difference is that in the 

case of a statistical approach the function ψ, with which the time step is being made, is obtained 

from the experience, and in the case of a hydrodynamic scheme, the corresponding operator is 

obtained from theoretical considerations. However, any hydrodynamic scheme can be easily 

synthesized in the above-described statistical scheme. To do this one must the value of the 

difference operator at various points of measurements to include as a separate parameter in 

vector Q.  Consequent minimization of the average risk would reveal the contribution of the 

hydrodynamic model to the general synthesized model, and how much this synthesis is 

advisable. 

                                                          MODEL 

       Fig. 1 represents the general scheme of stepwise forecasting of the fields (1≤i≤t), assuming 

that the approximating functions  have already been obtained.  After the initial matrix A and 

matrix of functions, the process of forecasting of the fields is carried out.  

Consequently A is converted into a matrix A (i), which is then used as the starting material for 

computation of the functions on the i-th time step. Further, inside the inner cycle matrix A (i) is 

converted into matrix A (i, j), which further is directly used for prediction of the meteorological 



fields 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Fig. 1   Prediction of the fields steps ahead 
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(i-index of the number of steps,  j-index of the number of functions) 

At the same time the replenishment of the vector fields , . . . , , arecarried out, and as a 

result at the final stage of the inside cycle we will have succession , . . . , ,                            

representing the totality of all the fields after the first time step. The cycle of time steps 

completes the process, and at the last step will have a set of fields corresponding to a given lead-

time. At the same time after the next i-th time step, another set of fields is attached to the matrix  

A (i + 1)to obtain the results on the (i + 1) - th step. Thus, in order to make a prediction on the 

i-th time step of the  j-th element, it is necessary to imagine, conditionally speaking, matrix  

 as an argument of the function . 

       However, when initial data do not represent direct measurements, but some averaged 

characteristics of the elements, the multi-step forecasting process is open to question. In this 

case, it may occur reasonable to make a single time step, covering the lead timeentirely. The 

same can be said in the case where the original data are not complete and some additional 

elements for prediction are required.  However, the final decision of the question can onlybe 

obtained through experiments. 

Note that the necessity of the detailed time steps may arise mainly by shortrange and very –short 

range forecasting. This is corroboratednot only by the very design of the hydrodynamic 

equations, but also by the experience of the hydrodynamic modeling of the atmosphere as a 

whole. Indeed, the time step in the finite-difference schemes arises from the partial derivatives 

with respect to time, which implies the rate of change of the function at any given moment. 

Therefore, any unsound increase of the time step may lead not only to loss of important 

information, but also toother undesirable effects adversely affecting the result. 

 

                                                                EXPERIMENTS 

   

       By modeling of the large-scale processes in the atmosphere as the source of information may 

be used both direct measurements at the stations, and the gridded values of the objective analy-

sis. When modelling is realized using stepwise calculations, both options have its advantages and 

disadvantages. Of greatest interest is the use of the primary data, as soon as it allows avoiding 

additional data processing related to objective analysis. However, access to initial information is 

not simple nowadays, so that using it for modeling purposes is not always reasonable. Unlike the 

initial data, objective field analysis data are readily available and can be used for the current pre-

diction, and for model construction as well (see., E.g., [7]). 

       In the present paper for verification of the empirical approach were used the results of objec-



tive analysis, obtained from the website [7].  These data present the values of meteorological 

elements in grid points NCEP / NCAR with space and time steps making up 2,5 grad and 6 

hours, correspondingly. The experiments were carried out using data for July and January to ob-

tain the prediction of the global temperature field one step ahead.  Fig. 2 shows curves characte-

rizing the behavior of average risk estimation, according to the dimension of the parameter vec-

tor, constructed for one-step temperature forecast in July. In this case, the upper curve is con-

structed using geographical coordinates of the grid, the lower curve - without their participation. 

As it seen from the figures, the average risk estimation by predicting the temperature without 

using coordinates is significantly higher than the corresponding estimate obtained with latitude 

and longitude involved. That is despite the fact that latitude and longitude, taken as separate pa-

rameters are sufficiently informative. This result, initially seeming paradoxical, can be explained 

quite simply. Latitude and longitude in the points of measurement are involved in the selection 

process as the two parameters, which must necessarily belong to the final set. However, the 

structure of the data used for construction allows us, not to use these variables at all, since coor-

dinates of the stations, presenting finite number of points corresponding to the number of grids, 

is indirectly present in the database, and this order must  remain the sameall-time steps. In fact, 

in this case, the coordinates of the station (or cell location) are replaced by some sequence of 

number (or symbols) which are not used when the functions are recovered, but which allow to 

identify any current small situation by the routine  forecasting.Therefore, all further experiments 

to restore the temperature fields were carried out without the participation of latitude and 

longitude. 

      Note that in this figure, as in all the following, not the squared error is plotted along the y-

axis, but the magnitude, which is proportional to the squared error. However, the efficiency of 

the approximation, defines, above all, not the verysquared error but its decrease velocity. As 

additional reference point on the plot may serve an error on the first parameter, which 

corresponds to the average climate forecasts. 

       Fig. 3 shows the behavior of the curve by forecasting temperature 6 hours ahead, calculated 

for January 2, starting from 00 hours. The maximal prehistory interval of the process makes up 

18 hours. Thus, by the recovery of functional dependence, were used 8 parameters, of which 4 

were surface height at 500 mb, and the rest - temperature at the same level. 

 



 
 

        Fig. 2. Curves of average risk estimations  obtained using the same material. The  

upper curve - with coordinates, the lower curve - without. 

 

 
 

             Fig. 3. Curves of error behavior. The lower curve corresponds to mean 

             square error, the upper curve – to the errors of sliding control 

 

 Asit is seen from the figure, the curves are located very close to each other, which naturally can 

be explained by the usage of a large number of situations for constriction under the relatively 

small number of potential arguments. 
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              Figure 4. Curves of average risk estimations for sphere (upper curve), 

             hemisphere (middle curve), and southern hemisphere (bottom curve) 

 

       Fig. 4 represents the curves obtained by temperature field prediction for the 

entire sphere, and for the northern and southern hemisphere separately. As it is 

seen from the figure, the errors in the global case are almost the same as they are 

for the northern hemisphere. As for the southern hemisphere, the errors are 

consistently smaller than the errors for northern hemisphere, as well as for the 

entire area. The reasons for this may be different.One of the reason - a change of 

seasons at the time of the forecast.  In southern hemisphere, in contrast to the 

northern hemisphere, takes place summer. Moreover, obtained in such a way the 

prognostic formula does not differ much according to its form from each other’s.  

At the same time, for the whole sphere, we have the formula 
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whereasthe formula for hemisphere 

 

 

,                                                                                                                            

 

differs from the preceding formula only by the last term. The formula for the southern 

hemisphere differs from the first formula only by the last two terms 

 

 

,  

which in reality make a negligible contribution as compared to the previous four. This result 

shows that the chosen distributions of the selected situations are fairly uniform, and the formulas 

obtained using these distributions are stable enough. It is noteworthy that in all three formulas, 

the monomials of the first degree are predominating. However, this does not indicative on the 

simplicity of the modeling processes. The above experiments correspond to one-level model with 

two input parameters, and therefore, the description of the simulated processes cannot possibly 

claim to completeness. If you include in the experiment additional parameters, as well as 

additional levels at which these parameters are measured, the polynomial representation of the 

fields will match to more adequate description of real processes, and in this case, the 

predominance of monomials of higher degree would be much more probable. 

 

                                                      SUMMARY 

        

       In conclusion, we formulate the basic differences and the main advantages of 

the new approach compared to the traditional methods of global forecasting. Com-

parisons with other statistical methods of global forecasting is hardly appropriate in 

this case, taking into account that the global modeling was associated so far with 

hydrodynamic methods only. As to the hydrodynamic approach, the major advan-

tage consists in the fact, that there is no need to calculate derivatives, which con-

nected with idealization of the reality and the necessity of solving ill-posed prob-

lems. Besides, there is no need to operate with the system of difference equations, 

which is associated with the solution of finite-difference scheme stability prob-

lems. The question of the unique existence of the solution in this case is not as 



acute as it is by hydrodynamic modeling, since the existence of solutions, as well 

as uniqueness,  is defined by the empirical approach in the process of modeling 

with the help of the efficient statistical criteria. 

       The selection of time-step and space-step,  by solving system of differential 

equations, is realized taking into account the stability of the finite-difference 

schemes thatis not directly connected to the aim of construction. In the above 

considered construction, the problem of choice of the steps in time and space is not 

of a current importunes, because this choice is completely dictated by the structure 

of the available and the incoming hydro meteorological information. In the case of 

long term forecasts, when averaged characteristics of the elements are predicted, 

the time step can be significantly increased, but in all cases it must be a multiple of 

the interval of measurements 

       The absents of the additional steps in the constructions, which, as a rule, do 

not fit into a single controlled computing process, such as adjustment of the fields, 

or objective analysis, represents the undoubted advantage of this approach 

compared with hydrodynamic methods.   However the main advantages of the 

approach is that the whole process of the model construction is controlled by a 

single criterion (average risk criterion), and this criterion is directly connected to 

the ultimate goal of construction. All this testifies to the prospects of successful 

development and application of the empirical approach for global modeling. 
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