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There is no more challenging problem in computational science than that of
estimating, as accurately as science and technology allows, the future evolution of
Earth’s climate; nor indeed is there a problem whose solution has such importance
and urgency. Historically, the simulation tools needed to predict climate have
been developed, somewhat independently, at a number of weather and climate
institutes around the world. While these simulators are individually deterministic,
it is often assumed that the resulting diversity provides a useful quantification
of uncertainty in global or regional predictions. However, this notion is not well
founded theoretically and corresponding ‘multi-simulator’ estimates of uncertainty
can be prone to systemic failure. Separate to this, individual institutes are now
facing considerable challenges in finding the human and computational resources
needed to develop more accurate weather and climate simulators with higher
resolution and full Earth-system complexity. A new approach, originally designed to
improve reliability in ensemble-based numerical weather prediction, is introduced
to help solve these two rather different problems. Using stochastic mathematics,
this approach recognizes uncertainty explicitly in the parametrized representation
of unresolved climatic processes. Stochastic parametrization is shown to be more
consistent with the underlying equations of motion and, moreover, provides more
skilful estimates of uncertainty when compared with estimates from traditional
multi-simulator ensembles, on time-scales where verification data exist. Stochastic
parametrization can also help reduce long-term biases which have bedevilled
numerical simulations of climate from the earliest days to the present. As a result,
it is suggested that the need to maintain a large ‘gene pool’ of quasi-independent
deterministic simulators may be obviated by the development of probabilistic
Earth-system simulators. Consistent with the conclusions of the World Summit on
Climate Modelling, this in turn implies that individual institutes will be able to pool
human and computational resources in developing future-generation simulators,
thus benefitting from economies of scale; the establishment of the Airbus consortium
provides a useful analogy here. As a further stimulus for such evolution, discussion
is given to a potential new synergy between the development of dynamical cores,
and stochastic processing hardware. However, it is concluded that the traditional
challenge in numerical weather prediction, of reducing deterministic measures of
forecast error, may increasingly become an obstacle to the seamless development of
probabilistic weather and climate simulators, paradoxical as that may appear at first
sight. Indeed, going further, it is argued that it may be time to consider focusing
operational weather forecast development entirely on high-resolution ensemble
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prediction systems. Finally, by considering the exceptionally challenging problem of
quantifying cloud feedback in climate change, it is argued that the development of
the probabilistic Earth-system simulator may actually provide a route to reducing
uncertainty in climate prediction. Copyright c© 2012 Royal Meteorological Society
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You can thank your lucky stars that you are not economists.
Those poor souls don’t even know their equations! (Sir John
Mason, Director-General Meteorological Office, to his 1977
graduate intake)

I believe that the ultimate climate models . . . will be
stochastic, i.e., random numbers will appear somewhere in the
time derivatives. (Lorenz, 1975)

1. Introduction

The problem of understanding and predicting climate is
fundamentally a scientific one, but with extraordinary
relevance for society. However, our understanding and
ability to predict climate are still rudimentary. For
example, due to profound uncertainties, primarily with
the hydrological cycle, we are still unable to rule out
the possibility that anthropogenic climate change will be
catastrophic for humanity over the coming century, or
something to which we can adapt relatively easily. Hence,
while climate policy on mitigation or adaptation is rightly
based on risk assessment, the risks cover a very broad range
of potential outcomes, presenting a barrier to clear-cut
policy and decision making. How well do we understand
these uncertainties? Are they irreducible? Could the climate
science community do better in reducing uncertainty? Key
conclusions of this paper are that, while there are indeed
irreducible uncertainties in predicting climate, and our
understanding of these uncertainties is poor, new techniques
promise not only to improve our ability to quantify climate
prediction uncertainties more reliably, but also may actually
help reduce uncertainty.

To take this further, the analysis presented in this paper
suggests that development of new scientific tools to quantify
uncertainty in predictions of climate more reliably, have
implications for the way in which weather and climate
institutes are themselves organized, both internally, and
with respect to one another. For example, it could be
argued that the existence of a substantial ‘gene pool’ of
quasi-independent climate simulators1∗ not only allows an

∗1Throughout this paper, the word ‘simulator’ is used instead of the
more conventional word ‘model’ (cf. Goldstein and Rougier, 2004). This
may irritate some readers within the weather and climate community.
However, for the public and many policy makers too, use of the word
‘model’ has a tendency to conjure up a picture of a child’s toy. Some
so-called climate ‘sceptics’ take advantage of this word association in
portraying climate models merely as glorified computer games and not
as the sophisticated mathematical representations of basic laws of physics
that they are. When communicating with the public we have a tendency
to use our own jargon, often subconsciously; hence we use the word
‘model’ in public because that is what we use amongst ourselves, unaware

assessment of uncertainty in climate predictions (through
the internal spread of the corresponding multi-simulator
ensembles), but also engenders a spirit of competition
between institutes, thereby fostering creativity. While these
arguments have merits, there are counterarguments to
be discussed in this paper: firstly, that multi-simulator
ensembles may be prone to systemic failure due to
shortcomings in the basic numerical ansatz used to
formulate all contemporary simulators; and secondly that
the limited human and computational resources available at
the institutional level are major obstacles to the development
of more accurate climate simulators.

The new scientific element introduced into this discussion
hinges on a developing programme to reformulate
stochastically our weather and climate prediction simulators.
This ‘stochastic’ programme has emerged from the
numerical weather prediction (NWP) community (e.g.
Palmer, 1997, 2001; Buizza et al., 1999), and its relevance
to the climate problem can be seen as exemplifying the
‘seamless prediction’ philosophy (Palmer and Webster,
1993; WCRP, 2005; Slingo and Palmer, 2011) whereby
the insights and constraints of NWP are brought to the
climate table. The outline of the paper is as follows.
In section 2, a number of reasons are given as to why
incremental developments in the status quo for climate
simulation science may not be able to provide the needed
improvements in coming years. Section 3 discusses a
programme to reformulate our comprehensive weather
and climate simulators stochastically. Results are presented
indicating how ensembles based on a single simulator
with stochastic representations of simulator uncertainty
can outperform the more conventional multi-simulator
approach to uncertainty. Discussion of the need to
integrate this stochastic approach into programmes of basic
simulator development are discussed in section 4, using
standard arguments familiar in other areas of physics.
Section 5 discusses, briefly, a potential synergy between
the development of probabilistic weather and climate
simulators, and an emerging computer hardware design
where exact bit reproducibility is sacrificed in order to
improve energy efficiency. Section 6 presents an analysis
of one obstacle to progress; indeed it is suggested that it
may be time to stop production of a separate deterministic

of these pejorative word associations. Perhaps using the word ‘simulator’
will engender more respect for these numerical representations. Modern
commercial pilots are trained almost exclusively on simulators; that
apparently does not deter the public from flying. (If instead the pilots
were trained merely on ‘models’ perhaps the public would be deterred!)
As such, it may be time to start using the word ‘simulator’ in place of
‘model’ even within scientific discourse.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)



Towards the Probabilistic Earth-System Simulator

weather forecast, and to focus entirely on the development
of probabilistic prediction systems – this may also require
some evolution of practices in weather forecast offices too.
Section 7 presents a vision for the development of future-
generation probabilistic weather and climate simulators,
using the establishment of the successful Airbus consortium
as an analogy. It is argued, focusing on the thorny issue
of cloud feedback in climate change prediction, that the
development of the probabilistic Earth-system simulator
may actually help reduce uncertainty in the magnitude (and
indeed sign) of this feedback. Conclusions are given in
section 8.

A key aspect of this paper is that it provides new
scientific arguments to support the conclusions of the World
Summit on Climate Modelling (Shukla et al., 2010) that
the community worldwide should be evolving towards a
small number of high-resolution Earth-system simulators,
possibly based the major geopolitical groupings.

Regarding the quotes at the beginning of the paper, the
author was very lucky to be one of Sir John Mason’s new
graduate intake in 1977, and has enjoyed the most marvellous
career as a result, at the Met Office, at the European Centre
for Medium-Range Weather Forecasts (ECMWF), and now
at Oxford University. The author agrees with Sir John’s
quote at the beginning of the paper, but only up to a point!
And the point, as with so many other points of foundational
importance on prediction and predictability, was first made
by Ed Lorenz, with whom the author has had the privilege
to interact during Ed’s many visits to ECMWF.

In the discussion below, the importance and urgency of
developing reliable climate simulators – to inform global
policy on climate mitigation, to help society adapt to climate
change, and to assess the impacts of proposals to actively
geoengineer climate – will be assumed.

2. A critique of the traditional deterministic weather and
climate simulator

2.1. The gene pool of ab initio climate simulators

Arrhenius (1896) developed the first mathematical simulator
to quantify the effects of anthropogenic climate change.
Based on the notion of energy balance in one dimension, the
simulator incorporated both the direct greenhouse effect
from increased carbon dioxide and the amplifying effect
of water vapour, the latter through an assumption that as
the atmosphere warms its relative humidity will remain
constant.

The key problem with this approach is that water, unlike
carbon dioxide, is not well mixed in the atmosphere, and
water’s three dimensional distribution, in all its phases, is
sensitive to dynamical effects. The development of ab initio
climate simulators, where dynamical effects are represented
using the Navier–Stokes equations and notions such as
constant relative humidity are not assumed, began with
the work of Phillips (1956), who was able to adapt the
simulators emerging in the rapidly developing field of NWP.
The first projections of anthropogenic climate change using
such ab initio climate simulators were given by Manabe and
Wetherald (1975).

Over the years, a diversity of ab initio climate simulators
has been produced, as individual institutes around the world
sought to replicate and extend the work of these pioneers.
This diversity (sometimes referred to as a ‘gene pool’) can

be seen as a virtue. By not putting ‘all our eggs in one
basket’, the diversity of predictions provides an estimate of
prediction uncertainty. For example, results in the IPCC
Fourth Assessment Report (Solomon et al., 2007) are based
on a pool of coordinated projections made by some 24
climate simulators developed in different climate institutes
(CMIP3; Meehl et al., 2007). A similar set is currently being
made for the IPCC Fifth Assessment Report.

In addition, the development of such a diversity of
simulators engenders a degree of rivalry and competition
between institutes that many considered necessary to foster
creativity. For example, there is kudos for the institute whose
climate simulator is perceived by the community as ‘being
the best’, and having a ‘world-leading’ climate simulator can
be considered a matter of national and institutional pride.

Maintaining such a diversity means there are relatively
few opportunities to pool resources internationally and
thus to benefit from ‘economies of scale’ when trying to
improve these simulators. Hence the funding needed to
improve an Earth-system simulator must largely be found
at the national level. As such, even if the investment for the
supercomputing needed to make global climate projections
at high spatial resolution is small compared with the global
costs of mitigation and adaptation, the investment may
indeed be significant compared with other national funding
priorities, especially in (these) times of economic difficulty.

Hence one is therefore forced to ask two questions.
Notwithstanding the benefits discussed above, is this
institutional-based framework unquestionably a good thing,
and are the merits of the ‘gene pool’ incontrovertible? If not,
is there an alternative?

2.2. Determinism, parametrization and scaling symmetry

All climate simulators used in CMIP3 (and indeed CMIP5)
have inherited a basic feature from early NWP code:
determinism2 . At one level, this is hardly surprising–the
underlying partial differential equations on which the
simulators are based (e.g. the Navier–Stokes equations)
are deterministic. However, the assumption of determinism
in the computational code implies that representations of
unresolved processes in such simulators are themselves
deterministic. For example, in his recent essay on the need
for improved parametrization in atmospheric simulators,
Jakob (2010) notes that, since many important processes in
the atmosphere remain unresolved, ‘it is therefore necessary
to represent those subgrid-scale processes as a function
of the grid-scale variables.’ In mathematics, a function
associates one quantity – the argument – with another
quantity – the value – in the sense that exactly one value is
associated with each argument. This characterizes perfectly
the conventional approach to parametrization: the grid-
scale variables determine precisely the grid-box tendency
associated with the subgrid processes.

The basis for determinism appears superficially solid.
Since, unlike those poor economists, we mostly know
our equations at the level of partial differential equations
(though see comments about Earth-system complexity near
the end of section 4), we should therefore know them at
the computational level too, at least at sufficiently high

2In proof, I was informed of one simulator where this is not true (Hansen
et al., 1983).
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resolution. On top of this, improvements in deterministic
parametrizations have increased the realism of comprehen-
sive climate simulators enormously since the early days of
Manabe and Wetherald, and this increase in realism has also
led to substantial gains in conventional deterministic skill
in weather prediction (Simmons and Hollingsworth, 2002).
Is there any reason to doubt that similar improvements lie
just around the corner?

However, is the argument for determinism unassailable,
and is it possible that the assumption of determinism at
the computational level is actually holding back progress in
the development of climate and weather simulators? Let us
start by going back to basics. Although the atmosphere is a
compressible multi-phase fluid and indeed a considerable
part of its complexity arises from this, consider for
simplicity an incompressible homogeneous fluid for which
the Navier–Stokes equations can be written:

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p + µ∇2u, (1)

where u is fluid velocity, p is pressure, ρ is density and µ is
viscosity. These ab initio equations are solved numerically by
truncating the equations using some finite grid or other finite
(e.g. spherical harmonic) basis. If we write u(x, t) = u(x, t) +
u′(x, t), where the overbar denotes some Reynolds-average
operator, which we assume here to be a grid box mean,
then the ‘Reynolds-averaged’ form for the Navier–Stokes
equations above can be written (schematically) as

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p + µ∇2u + E

The effect of unresolved subgrid processes on the resolved
scales are represented by the quadratic ‘Reynolds stresses’ E
written in component form:

Ei = −ρ∇j(u′
iu

′
j)

Jakob’s definition of parametrization, applied to these
Reynolds stresses, follows a long tradition in fluid
dynamics, including luminaries such as Boussinesq, Prandtl,
Smagorinsky (and many others), in trying to close the
Reynolds-averaged equations by representing E as a
deterministic function of the resolved scale variables:

E = P(u;α)

where α denotes a number of parameters which can be
determined, in principle at least, by observations and/or
theory.

However, a key symmetry of Eq. (1) is associated with scale
invariance: if u(x, t), p(x, t) is a solution to the Navier–Stokes
equations, so also is

uτ (x, t) = τ−1/2u

(
x

τ 1/2
,

t

τ

)

pτ (x, t) = τ−1p

(
x

τ 1/2
,

t

τ

)
,

for any τ > 0 (Majda and Bertozzi, 2001).
While we would not expect precise scale invariance of

this sort to apply to the real atmosphere (not least because
of latent heating and other diabatic sources), the existence

Figure 1. Variance power spectra of wind and potential temperature based on aircraft observations. The spectra of meridional wind and temperature
are shifted by one and two decades to the right, respectively. Lines with slopes −3 and −5/3 are entered at the same relative coordinates for each variable,
for comparison. From Nastrom and Gage (1985).
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of such scaling symmetries in the underlying equations
is consistent with observations of power-law structure in
the atmosphere. Figure 1 reproduces the celebrated result of
Nastrom and Gage (1985) showing an observational analysis
of atmospheric kinetic energy as a function of horizontal
scale (shown in terms of horizontal wave number k). This
analysis draws attention to two separate power-law slopes: a
‘−3’ slope at large scales and a ‘−5/3’ slope at smaller scales.
The truncation scale of all weather forecast simulators, and a
number of contemporary climate simulators, lies within the
‘−5/3’ range. Similar power-law behaviour has been seen
in cloud data (Rossow and Cairns, 1995). While there is
some disagreement concerning the physical interpretation
of these power laws (see, for example, Lindborg, 2007),
broadly speaking it appears that the ‘−3’ slope is indicative of
quasi-two-dimensional flow dominated by rotation, while
the ‘−5/3’ slope is indicative of three-dimensional flow
with substantial divergent motion (enhanced by latent heat
release in cloud systems, associated with the compressible
multi-phase nature of the atmosphere).

As first clearly pointed out by Schertzer and Love-
joy (1993), the ‘deterministic truncation/parametrization
ansatz’ outlined above is inconsistent with the existence of
scaling symmetries and associated power-law behaviour – for
the simple reason that such power laws preclude any mean-
ingful separation between ‘resolved’ and ‘unresolved’ scales,
and hence between ‘resolved’ and ‘unresolved’ processes.
See also Schertzer and Lovejoy (2004). Possibly consistent
with this, it can be noted that some simulators, e.g. that
of ECMWF, have difficulty simulating the ‘−5/3’ spectrum,
even at relatively high truncation scales of 10 km (Straus,
2011, personal communication, using data from integra-
tions performed as part of the Athena project; Jung et al.,
2012: Kinter et al., 2012).

It can be argued that the failure of deterministic
parametrizations to represent this observed power-law
structure is the fundamental cause of systematic model
error. For example, in the IPCC AR4 it is concluded that:

models still show significant errors. Although these are generally
greater at smaller scales, important large-scale problems
also remain. . . . The ultimate source of most such errors
is that many important small-scale processes cannot be
represented explicitly in models, and so must be included
in approximate form as they interact with larger-scale features.
. . . consequently models continue to display a substantial
range of global temperature change in response to specified
greenhouse gas forcing. (Solomon et al., 2007, ch. 8)

Perhaps one could argue that with fine-enough simulator
resolution large-scale errors associated with any violation
of power-law behaviour can be made arbitrarily small. A
simple scaling argument (Lilly, 1973; see also Palmer, 2001)
indicates that this is not a reliable conclusion. Let E(k)
denote atmospheric kinetic energy per unit wave number,
at wave number k. We can define a time-scale τ (k) in terms

of a length divided by a velocity, i.e. τ (k) ∼ k− 3
2 E− 1

2 (k).
Let us suppose τ (k) characterizes the time it takes errors at
wave number k to grow and infect nonlinearly the accuracy
of simulations at wave number k/2. As above, suppose we
are only interested in large-scale aspects of the flow, i.e.
wave numbers less than some kL. We can ask how long it
will take before truncation errors at large wave numbers
2N kL, N >> 1 could affect large-scale simulations of the

flow. A plausible estimate of this is given by

�(N) = τ (2N kL) + τ (2N−1kL) + . . . τ (20kL)

=
N∑

n=0

τ (2nkL)

Now if E(k) ∼ k−3 then τ (k) is independent of k and �(N)
diverges as N → ∞. This suggests that if the atmosphere was
quasi two-dimensional all the way down to very small scales,
errors at small scales could be ‘shielded’ from the large scales,
by increasing the simulator resolution sufficiently. However,
if E(k) ∼ k−5/3 then τ (k) ∼ k−2/3 and �(N) ∼ 2.7τ (kL).
There is nothing especially significant about the precise value
2.7. Hence let us say that with a -5/3 power law the series
�(N) converges to a value less than a few ‘eddy turnover
times’ of kL, as N → ∞. Hence, with a ‘−5/3’ power law, it
may be impossible to shield the large scales from truncation-
scale errors by increasing sufficiently the resolution of the
simulator. This analysis is consistent with the study of
Lorenz (1969); see also the more robust analysis of Rotunno
and Snyder (2008) using the surface quasi-geostrophic
equations, but which has not been proven rigorously from
the underlying 3D Navier–Stokes equations. (It is probably
not literally true in the limit where 2N kL ∼ kV and kV lies in
the viscous range of scales; however, it appears to be an open
question asymptotically in the range kL << 2N kL << kV.)
It is worth commenting that the predictability estimates
above do not depend on the mechanism by which the −5/3
power law is established.

Despite this, there are very good reasons for attempting to
increase the resolution of atmospheric simulators as much
as possible. Firstly, the higher a simulator’s resolution,
the better the Earth’s topography and land/sea boundary
can be represented. Secondly, high resolution ensures that
Rossby wave breaking, important for the maintenance of
blocking anticyclones and other nonlinear weather regime
phenomena (see section 7), can be simulated properly.
Thirdly, the higher the resolution, the better the simulator
can utilize high-resolution observations, e.g. from satellite
instruments with small pixel size. Finally, at some stage, high-
resolution simulators will be capable of representing the
key atmospheric phenomenon of deep convection (which,
along with baroclinic instability, can be considered one of
the core dynamical modes of atmospheric instability and
hence variability). Similar arguments apply to the oceans
too. In addition to these theoretical considerations, regional
predictions of climate change, particularly for precipitation
change, have been shown to be sensitive to changes in
resolution, horizontal and vertical (Matsueda and Palmer,
2011; Scaife et al., 2011).

However, a plausible consequence of the analysis above
is that as the truncation scale of a climate simulator moves
into ‘−5/3’ range the effects of the inconsistency of using
deterministic parametrization cannot be reduced to zero by
increasing resolution sufficiently (building a comprehensive
climate simulator whose truncation scale lies in the viscous
range is utterly impracticable in the foreseeable future). By
this, it is not to be inferred that the effect of misrepresenting
the small scales will damage the larger scales uniformly in
time; that very pessimistic scenario is inconsistent with
the fact that conventional NWP simulators can, from
time to time at least, predict large scales very accurately,
well beyond the limit �(N) ∼ 2.7τ (kL). That is to say,
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Figure 2. Seasonal forecast reliability diagrams for the ENSEMBLES multi-simulator ensemble. Based on 1980–2001 hindcasts initialized on 1 May and
for forecast period June–August. (a) Seasonal mean NINO3 sea surface temperature above upper climatological tercile. (b) Seasonal mean precipitation
anomalies in Amazon Basin in lower climatological tercile. (c) as (b) but for northern Europe. (d) As (b) but for Sahel. The dotted lines show the
climatological frequency of the event and the size of the grey dots is indicative of the relative sample size within that probability bin.

experience suggests that the rapid upscale error propagation
associated with the ‘−5/3’ spectrum will occur somewhat
intermittently (for example, the source of some especially
erroneous medium-range weather forecasts over Europe
have been traced to short-range forecast errors associated
with intense mesoscale convection over the US Midwest).
This raises the fundamental question: how can we ensure
that the advantages of integrating simulators at higher and
higher resolution will not be somehow be destroyed by rapid
intermittent upscale propagation of error?

As suggested by this analysis, contemporary simulators
may have common failings due to the universal use of
the deterministic truncation/parametrization ansatz. This
implies that multi-simulator ensembles may be blind to the
consequences of such systemic failings, so that ensemble
agreement cannot be assumed a reliable measure of forecast
confidence. Is there any evidence for this?

There is some evidence from the poorness of the
‘attributes curve’ in reliability diagrams (Wilks, 2006)
from seasonal forecasts of regional precipitation based on
DEMETER multi-simulator ensembles (Palmer et al., 2008).
An attributes curve can assess whether, for a particular
forecast event E, forecast probabilities of E are well calibrated

against observed frequencies of E – the technical definition
of ‘reliability’. The attributes curve for a reliable forecast
system should lie on the diagonal. Figure 2 shows an
update of such seasonal forecast reliability diagrams but
based on the more recent ENSEMBLES multi-simulator
ensemble (Weisheimer et al., 2009). Figure 2 shows examples
(for seasonal mean Sahel and northern European rainfall)
where the flatness of the attributes curves indicates that
the ensemble is extremely overconfident and hence highly
unreliable. The origin of such unreliability is, most likely, an
inadequate representation of simulator error in the multi-
simulator ensemble (the author is unaware of any systematic
misrepresentation of observational uncertainty that would
lead to such unreliability).

As discussed in Palmer et al. (2008), some of the
unreliability of seasonal forecasts arises from difficulties
which climate simulators have in simulating the statistics of
weather regimes (Straus et al., 2007). For example, ability
to simulate anticyclonic blocking accurately is a well-
known problem amongst low-resolution climate simulators.
However, recent results from the Athena project (Kinter
et al., 2012; Jung et al., 2012) suggest, even at higher
resolutions, that climate simulators may have difficulty
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replicating the multimodal probability distributions of
regional weather regimes (Andrew Dawson, personal
communication 2011), even though such multimodality is
highly significant when diagnosed from reanalysis datasets.
As discussed in section 7, it is suggested that an ability to
simulate regional weather regimes accurately will be key
to reducing uncertainty in the cloud feedback problem for
predicting global climate change.

In a recent paper, Doblas-Reyes et al. (2011) concluded
that the dominance of simulator bias in state-of-the-
art coupled ocean–atmosphere simulators is a major
impediment to the investigation of decadal time-scale
predictability, in particular in assessing whether useful
decadal predictions can be made, given our current ability to
observe the subsurface ocean. Two key points can be made
here. Firstly, one of the goals of the emerging programme
of ‘climate services’, that of providing reliable near-term
climate forecast information to a range of customers, is
not likely to be met by current-generation simulators.
Secondly, the value of investment in ocean (and other)
observations is not being fully realized because of simulator
bias. This in turn raises the following point. There have
been many discussions in the community about the relative
importance of funding Earth observations, vis à vis climate
simulator development. However, this is a false dichotomy;
in truth, we will only realize the full value of investment
in Earth observations when climate and weather simulators
are of sufficient quality to be able to ingest and utilize
these observations fully (either in analysis/reanalysis mode,
or in predictive mode). If the information content in an
observation is being lost prematurely due to simulator bias,
then the investment in producing this observation will not
have been fully realized.

2.3. True diversity of the ‘gene pool’ of climate simulators

Given the problems above, it is worth asking just how
diverse our ‘gene pool’ of climate simulators really is.
Many climate institutes use the same basic closures in
their simulators’ parametrizations; indeed some share the
same parametrizations. Estimating the effective size, Meff ,
of the CMIP3 multi-simulator ensemble has recently been
studied by Pennell and Reichler (2011), who note that ‘for
the full [CMIP3] 24-member ensemble, this leads to an Meff

that . . . lies only between 7.5 and 9’. They conclude: ‘The
strong similarities in model error structures found in our
study indicate a considerable lack of model diversity. It is
reasonable to suspect that such model similarities translate
into a limited range of climate change projections.’

Hence, possibly related to the systemic problems discussed
above, the effective size of the gene pool is rather small:
many of the institutional simulators whose integrations are
submitted to CMIP are relatively minor modifications of a
small number of core simulators.

There are techniques to expand ensemble size by
perturbing the parameters α within a given simulator,
according to expert opinion about inherent uncertainty
in the values of these parameters (Murphy et al., 2004:
Stainforth et al., 2005; see also section 4 below). While there
is certainly merit in treating these parameters as uncertain
and representing this uncertainty in ‘perturbed-parameter’
ensembles, evidence to date suggests that adding perturbed-
parameter integrations to a multi-simulator ensemble does
not change Meff by much (Masson and Knutti, 2011).

2.4. Climate complexity

Notwithstanding the remarks above, there are two funda-
mental problems that all climate institutes acknowledge as
obstacles to the development of accurate climate simulators:
insufficient human resources and insufficient computing
resources. These problems are especially acute in (current)
economically challenged times.

Since the days of Phillips, and Manabe and Wetherald,
climate simulators have become increasingly complex. In
terms of parametrizations, the subgrid representations for
deep convection, clear-sky and cloud radiative effects,
subgrid orography, boundary layer turbulence, aerosols,
cloud microphysics, etc., have become immeasurably more
sophisticated (and computationally demanding) since the
early days. Moreover, what in the 1970s were essentially
atmosphere-only simulators (e.g. with simple ‘slab’ oceans
and ‘bucket’ land–surface hydrology) have in the 2010s
become fully coupled representations of the atmosphere,
oceans, cryosphere and land surface with a range of
biogeochemical processes (‘Earth-system complexity’). The
need to ensure that chemical tracers are properly represented
during simulations, yet at the same time allowing the
simulators to run efficiently on massively parallel computers,
means that the numerics of the dynamical cores of weather
and climate simulators have to be extremely sophisticated.

Problems of algorithmic complexity do not stop there.
For climate-service applications, shorter-range decadal pre-
dictions require that simulators are initialized with contem-
porary observations, implying the need for sophisticated
data assimilation schemes for the atmosphere, oceans and
land surface.

Finally, the dynamical cores themselves are increasingly
complex as quasi-geostrophic equations have given rise to
the hydrostatic primitive equations, and now to the non-
hydrostatic dynamical cores, needed to be able to probe
kilometre truncation scales where deep convection is at least
partially resolved. At these high resolutions, it is a highly
non-trivial problem to ensure that numerical code can run
efficiently over the very large numbers of processors of
modern supercomputers (the scalability problem).

Not surprisingly, climate institutes struggle to find
the human resources needed to develop these manifold
elements. On top of this, the computational demands of
a contemporary climate simulator means it is impossible
for an institute to develop simulators both with full
Earth-system complexity and with the resolution of a
contemporary NWP simulator, and at the same time run
large ensemble integrations from states initialized with
contemporary observations. This extremely important issue
has been discussed at length elsewhere, being a key topic
of the major World Summit on Climate Modelling (Shukla
et al., 2010; Palmer, 2011).

In the next sections, we discuss a relatively new approach
to the representation of unresolved processes in weather
and climate simulators, which may provide a solution to the
complex and challenging problems outlined in this section.

3. Stochastic representation of unresolved processes

Let us begin by considering a generalization of the definition
of what we mean by ‘parametrization’ and frame it, not in
terms of functional relationships, but as a constraint on some
prior (e.g. climatological) probability distribution of subgrid
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tendency based on a knowledge of contemporaneous values
of grid-scale variables. An explicit example will be given
below. This automatically suggests we treat the notion of
parametrization as an inherently probabilistic problem, to
be tackled by explicitly stochastic techniques (Palmer, 2001).

There is nothing new in the use of stochastic math-
ematics to describe climate simulators; the idea can be
traced to Hasselmann (1976), who developed an ideal-
ized coupled ocean–atmosphere simulator in which the
entire atmosphere was represented by a simple Markov
process. Using this simulator, Hasselmann showed how
ocean–atmosphere coupling would redden the spectrum
of atmospheric variability. However, the use of stochastic
mathematics in such earlier approaches is conceptually dif-
ferent from the concept being explored here: Hasselmann’s

simulator is (deliberately) a simplified idealized representa-
tion of climate, and the use of stochastic mathematics made
the representation of internal atmospheric variability in the
simulator equations mathematically tractable. Here, we are
not interested in mathematical tractability per se. Rather
it is being argued that stochastic mathematics also has an
inherent role to play in comprehensive ab initio weather and
climate simulators.

A key conceptual difference between deterministic and
stochastic parametrization is illustrated in Figure 3. While
deterministic parametrization represents the bulk-average
effect of some putative large ensemble of subgrid processes
occurring on scales smaller than the grid scale, stochastic
parametrization attempts to represent actual realizations
of the subgrid flow when no scale separation exists.

Figure 3. (a) Schematic of hypothetical situation where there is some scale separation between resolved and unresolved flow, justifying the notion of
deterministic parametrization. (b) Schematic of the more realistic situation where there is no scale separation between resolved and unresolved flow,
justifying the notion of stochastic parametrization.
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Figure 3 indicates that the stochastic parametrizations
must necessarily impact directly on scales larger than the
truncation scale. This is because, as discussed above, with
power-law behaviour, uncertainty in subgrid processes will
propagate upscale by nonlinear dynamical effects (Thuburn
et al., 2011). Hence part of the (stochastic) parametrization
process requires one to represent the effect of uncertainty in
the subgrid processes on the resolved grid.

In order to quantify the potential benefits of this stochastic
approach to parametrization, it is useful to consider a
reasonably tractable example where we know precisely
the ‘true’ system, which we will attempt to simulate
approximately using parametrizations, both deterministic
and stochastic. Consider, then, the set of linked nonlinear
ordinary differential equations put forward by Lorenz
(1996):

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F − hc

b

kJ∑
j=J(k−1)+1

Yj,

(2)

dYj

dt
= −cbYj+1(Yj+2 − Yj−1) − cYj + hc

b
Xint[(j−1)/J]+1.

(3)

Here the Xk represent the large, slow scales (analogous to
wave numbers ≤ kL) that we are interested in, and the Yj

represent the small, fast scales (analogous to wave numbers
≥ 2N kL) that we wish to parametrize. Here 1 ≤ j ≤ 32,
and k is cyclic mod 8. The last term of the first equation
couples the small scales to the large scales; we will call this
‘the small-scale tendency’. Below we consider two values
of the c parameter: c = 10 and c = 4; the h, b and F
parameters are held fixed. When c = 10, the Y variables
typically evolve over substantially faster time-scales than do
the X variables, i.e. there is clear temporal scale separation
between these variables. It will turn out that parametrizing
the small scales deterministically will work reasonably well
for this parameter setting. By contrast, when c = 4, this
scale separation is weaker and the parametrization problem
becomes inherently less deterministic. By way of analogy,
then, we use the values c = 10 to mimic the relatively steep
‘−3’ energy spectrum, and c = 4 to represent the relatively
shallow ‘−5/3’ energy spectrum of the real atmosphere.

With the true system represented by Eqs (2) and (3), we
now consider a simulator

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F − Pk,

Pk = (1 + rmult
k )Pdet

k (Xk;α) + radd
k ,

of the ‘true’ Lorenz (1996) system, where the small-
scale tendency is parametrized by the formulae Pk (first
discussed by Wilks, 2005). Here we have generalized
the conventional deterministic formula Pk = Pdet

k (Xk;α)
using stochastic variables radd

k and rmult
k . A number of

parametrizations are considered: ‘deterministic’ denotes a
deterministic parametrization (radd

k = rmult
k = 0) based on

fitting a cubic polynomial in Xk to points in a scatter
diagram of instantaneous small-scale tendency against Xk;
‘white additive’ denotes a simple white-noise term added
to the deterministic parametrization (radd

k 
= 0; rmult
k = 0);

‘red additive’ denotes a red-noise AR1 process added to

the deterministic parametrization; ‘multiplicative’ denotes a
red-noise AR1 process multiplying the tendencies from the
deterministic parametrization (radd

k = 0; rmult
k 
= 0).

We can use this system to illustrate the utility of the
probabilistic notion of parametrization as defined earlier in
this section. Figure 4 shows (solid curve) the unconstrained
(i.e. climatological) probability distribution of the small-
scale tendency term, the last term on the right-hand
side of Eq. (2) when c = 4. In this figure is plotted the
probability distribution of this tendency when the Xk

variable is constrained to lie in −6 ≤ Xk ≤ −5 (dotted
line) and 13 ≤ Xk ≤ 14 (dashed line). It can be seen that
the constrained probability distributions are quite different
from the climatological distribution. That is, knowledge
of the large-scale variable is important in constraining
the prior distribution. However, this knowledge does not
constrain the distribution so much that it collapses to a Dirac
delta function – which would be the case if deterministic
parametrization were accurate. Corresponding hat functions
for the putative deterministic parametrization, for −6 ≤
Xk ≤ −5 and 13 ≤ Xk ≤ 14, are shown in Figure 4 for c = 4;
compared with the constrained probability distributions,
these hat functions are quite obviously too sharp. As such,
it can be expected that the simulator with deterministic
parametrization will perform relatively poorly. Figure 4 also
shows that the probability distributions are sharper for
small deterministic tendency, suggesting that the simulator
with multiplicative noise parametrization may be especially
skilful.

Figure 5 shows skill score results for a large number of
initial-value ensemble predictions (Figure 5(a)) and one long
climate integration (Figure 5(b)). Full details are given in

Figure 4. Probability distributions of the tendency term in the (‘large-
scale’) X equations, due to the (‘small-scale’) Y variables in the Lorenz
(1996) dynamical system with c = 4. Thick solid line, prior climatological
distribution; dashed line, distribution conditioned on −6 < X < −5;
dashed line, distribution conditioned on 13 < X < 14. The fact that
the distribution is broader when X is constrained to large values than
when constrained to small values provides some explanation for why
the multiplicative noise parametrization is more skilful in Figure 5. The
thin solid lines define hat functions associated with the deterministic
parametrization scheme for −6 < X < −5 and 13 < X < 14. That these
are much narrower than the conditional probability distributions shows
the ‘overconfidence’ of the deterministic parametrization.
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Figure 5. (a) Solid and dashed lines show the ranked probability skill scores
for 75 initial condition ensemble forecasts at t = 0.6, based on differences
between the Lorenz (1996) dynamical system and various parametrized
versions of the system (see text for details), with c = 10 (solid) and c = 4
(dashed). The dotted line shows the ensemble mean RMS error for c = 4
(with values given on the right-hand side of the diagram). (b) Hellinger
distance between the climatological probability distribution of the Lorenz
(1996) dynamical system and the various parametrized versions, with
c = 10 (solid) and c = 4 (dashed). Based on integrations over 400 time
units.

Arnold et al.(2012). In the initial-value ensembles, evaluated
at t = 0.6 time units (perhaps equivalent to about 3 days
for weather forecasting), the initial conditions Xk(t = 0) are
known perfectly; hence there is no initial uncertainty, only
simulator uncertainty. The solid line denotes the results
with c = 10, the dashed line gives results with c = 4. For
the initial-value problem, we use the ranked probability
skill score (RPSS; Wilks, 2006) to assess the probabilistic
skill in forecasting Xk. For the climate integrations, we
use the Hellinger distance (related to the more familiar
Kolmogorov–Smirnov distance; Pollard, 2002) between
the ‘true’ and simulated probability distribution of Xk

values. Note that the larger the RPSS, the more skilful is
the forecast, whereas the smaller the Hellinger distance,
the closer is the simulated probability distribution to
the probability distribution of truth. Again, see Arnold
et al. (2012) for details. Additionally, for the initial-value
ensembles (Figure 5(a) for c = 4) we also show the
traditional deterministic score, root mean square (RMS)
error, averaged over all the individual forecasts.

A number of interesting results can be concluded from
Figure 5:

1. Based on RPSS and Hellinger distance, and as
expected, the c = 10 system is ‘easier’ to parame-
trize than the c = 4 system, and while stochastic
parametrization improves forecast skill for both val-
ues of c, the improvement is relatively small when
c = 10. By analogy, we would expect comprehen-
sive weather simulators to be harder to parametrize
deterministically, if their truncation scales probe the
−5/3 part of the spectrum. As discussed above, there

is an inherent tension (perhaps one would even say
incompatibility) between high-resolution simulation
and deterministic parametrization.

2. Based on RPSS and Hellinger distance, there is
an overall strong correlation between simulator
performance in initial value mode and in climate
mode, consistent with the philosophy underpinning
the notion of seamless prediction. That is to say, the
performance of the simulator in climate mode can
be gauged by its success in initial-value mode. Of
course, in the real world, one would not expect a one-
to-one correspondence between weather and climate
skill, because there are many slow climate processes
which are not important for weather prediction.
Nevertheless, the results here hint that skill on the
weather time-scale should be considered a necessary
step for reliable climate prediction.

3. The link between initial-value skill and climate
accuracy is only apparent when probabilistic measures
of skill are used to assess the initial value ensembles. If
the more traditional deterministic RMS error metric is
used to assess initial value skill, there is no correlation
between initial value skill and climate skill; indeed
the simulator with deterministic parametrization
appears most ‘skilful’. As discussed in section 6,
the conclusion to draw from this result is not that
the link between weather and climate skill is metric
dependent, but rather that the RMS error may actually
be an inappropriate metric of weather forecast skill.
The physical reason for this is discussed in section
6, where it is concluded that assessing simulators
based on weather forecast RMS error may in fact be
detrimental to the development of reliable climate
forecast systems.

4. Based on RPSS and Hellinger distance, there is an over-
all advantage for the red-noise parametrization over
the white-noise parametrization. This is consistent
with the discussion above: in stochastic parametriza-
tion, it is necessary to represent the means by which
uncertainty in the representation of subgrid pro-
cesses affects the large-scale flow, on spatial scales
larger than the simulator’s truncation scale, and on
time-scales longer than the simulator’s time step. In
Lorenz (1996), correlations between neighbouring Xk

variables are small, and, for this particular model,
there is not much benefit to the introduction of ‘spa-
tially correlated’ noise. However, as Figure 5 shows,
there is benefit in representing ‘temporally correlated’
noise. In general, for weather and climate simulators,
one would expect the noise to be both spatially and
temporally correlated.

5. There is an overall advantage for the multi-
plicative noise parametrization. This multiplicative
noise parametrization is essentially that developed
and tested in the ECMWF simulator by Buizza
et al. (1999).

In the latest version of the ECMWF multiplicative noise
scheme (or SPPT: stochastically perturbed parametrization
tendency scheme; see Palmer et al., 2009), the parametriza-
tion is given by

Ẋstoch = (i + rspecµ)Ẋdet, (4)
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Figure 6. Realizations of the stochastic pattern generator used in the ECMWF stochastically perturbed parametrization tendency scheme (Palmer et al.,
2009). Strong (faint) lines correspond to positive (negative) values.

where Ẋstoch denotes the stochastic tendency, Ẋdet the
total deterministic tendency, and rspec denotes a stochastic
spectral pattern generator based on an uncorrelated series
of red-noise processes, one for each spherical harmonic
coefficient. The relative amplitude of these red-noise
processes in spectral space is such as to produce Gaussian
correlations in physical space (see Figure 6). In the results
discussed below, there are two sets of such red-noise
processes: one with 6 h decorrelation time, the other
with smaller amplitude and 30-day decorrelation time
(see Palmer et al., 2009, for details). Finally, µ is an ad
hoc parameter which clips the stochastic tendencies in the
stratosphere and in the boundary layer. We return to this
‘µ’ parameter later.

A more overt example of the need to consider the
representation of subgrid uncertainty on the resolved spatial
scales arises in the stochastic backscatter scheme (Shutts,
2005; Berner et al., 2009):

Fψ =
(

bRDtot

Btot

)1/2

Pψ. (5)

Here the stream function forcing Fψ is associated with
an upscale energy transfer when, for example, divergent
kinetic energy associated with deep convection is converted
to rotational kinetic energy during mesoscale organization.
This forcing is represented by a stochastic pattern generator
Pψ (either the spectral generator, cf. Figure 6, or an
alternative cellular automaton – it can be noted in passing
that cellular automata provide computationally cheap means
to communicate information at the subgrid level, between
adjacent grid boxes). Here Dtot denotes the diagnosed
energy dissipation from the corresponding deterministic
parametrizations, and Btot and bR are parameters which
ensure dimensional consistency and degree of energy
backscatter respectively.

Figure 7 (from Palmer et al., 2009) shows the impact of
SPPT on the probabilistic skill of medium-range forecasts
of 850 hPa temperature in the Tropics using the ECMWF
Ensemble Prediction System (EPS). The results are dramatic.
The skill at day 2 of the probabilistic forecasts without
stochastic parametrization is reached at day 6 with stochastic
parametrization. It is hard to imagine any parametrization
having such an effect on forecast skill.

The introduction of stochastic parametrization into the
ECMWF simulator has fundamentally changed the skill of
the EPS in more ways than one. Importantly, it has allowed

Figure 7. Continuous ranked probability skill score for 850 hPa
temperature in the Tropics based on the ECWMF Ensemble Prediction
System with no representation of model uncertainty (dotted line); the
original ‘stochastic physics’ scheme of Buizza et al. (1999) (dashed line);
the 2-time Stochastically Perturbed Parametrization Tendency scheme
described in Palmer et al. (2009) (solid line). See Palmer et al.(2009) for
details.

the estimation of initial uncertainty to be made using
ensembles of (4D Var) data assimilations (EDA; Isaksen
et al., 2010). Until recently, EPS initial perturbations were
made exclusively using singular vector analysis (e.g. Buizza
and Palmer, 1995). The reason for this was that if an EPS
was based solely on initial perturbations from ensembles
of analyses, these perturbations had to be artificially
inflated in order that EPS spread and skill matched in the
medium range. Introduction of stochastic parametrization
into the data assimilation process (and the use of higher
resolution and hence less damped simulators) has enabled
ensemble data assimilation to be used to generate initial
EPS perturbations. Indeed Figure 8 shows the performance
of EDA in terms of the relationship between ensemble
spread at T + 6h and ensemble mean error. It can be seen
that, with representation of observation error only, not
only is the EDA underdispersive but also the EDA spread
does not discriminate well between low-error and high-
error short-range forecasts (it is particularly underdispersive
for high-error forecasts). By contrast, including SPPT and
backscatter into EDA, not only is the overall level of spread
much closer to that of error but the EDA spread now
discriminates well between low- and high-error short-range
forecasts.
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Figure 8. Relationship between T + 6 h ensemble spread and T + 6 h
ensemble-mean error of ensembles of data assimilations of the ECMWF
forecast system, for tropospheric vorticity in the Northern Hemisphere,
binned on error and based on: (dashed line) an ensemble with
representation of observation uncertainty but not model uncertainty;
(solid line) an ensemble with representation of observation and model
uncertainty (based on stochastically perturbed tendencies and stochastic
kinetic energy backscatter). The dotted line shows the ideal relationship.
From Bonavita (2011).

Figure 9 shows that EPS-based probabilistic predictions of
rainfall over Europe in the medium range are now extremely
reliable.

There is no doubt that ensemble forecasts with stochastic
parametrization are skilful, but are they more skilful
than forecasts using the more traditional multi-simulator
concept? This question, applied to the climate prediction
problem, lies at the heart of this paper. Table 1 shows
a comparison of probabilistic skill on the monthly time-
scale (where copious verification data exist), based on three
ensemble forecast systems (see Weisheimer et al., 2011, for
details). The first system is a multi-simulator ensemble
comprising the climate simulators that contributed to the
ENSEMBLES multi-simulator ensemble (Weisheimer et al.,
2009). The second system is the single-simulator ECMWF
seasonal ensemble forecast system with stochastic (SPPT and
backscatter) parametrization. The third ensemble is again
based on the single-simulator ECMWF seasonal ensemble
forecast system as above, but with no representation of
simulator uncertainty (i.e. only initial uncertainty).

Results show that for seven of the eight binary fore-
cast events considered (based on climatological temperature
and precipitation terciles over all land points), the single-
simulator ensemble with stochastic parametrization outper-
forms the multi-simulator ensemble. For one of the eight
events, the skill estimates for the stochastic parametrization

ensemble and the multi-simulator ensemble only differ by
the third significant digit. It might be imagined that the
key reason that the single-simulator stochastic parametriza-
tion ensemble outperforms the multi-simulator ensemble
is that the former has been made with a world-leading
weather simulator. However, if we compare the skill of the
multi-simulator ensemble with the skill of the same single-
simulator ensemble without any representation of simulator
uncertainty, then it can be seen from Table 1 that the lat-
ter is much the least skilful of the three ensembles for all
events considered. This indicates that the single-simulator
stochastic parametrization ensemble is not more skilful that
the multi-simulator ensemble because this particular sim-
ulator is somehow inherently better (e.g. in terms of its
deterministic forecast skill) than the other simulators.

In Weisheimer et al. (2011) it was also shown that on
longer seasonal time-scales stochastic parametrization still
has the edge against the multi-simulator ensemble for
precipitation forecasts, but not for forecasts of surface
temperature. This suggests (see section 4 below) that
development of the stochastic approach for the land surface
and for the oceans is also likely to be required in the future.
The skill of a perturbed-parameter ensemble was also tested

Figure 9. Reliability diagram for the ECMWF Ensemble Prediction System
at t = 4 days for prediction of rainfall exceeding 1 mm per day over the
European domain, based on verification from March to May 2011. The
values against the dots give the number of occasions where probability
forecasts within a given 10% range (and at 0% exactly) were made.

Table 1. Brier skill scores for probabilistic predictions for all global land area 2 m temperature and precipitation grid points, based on exceeding
upper climatological tercile (warm/wet) and not exceeding lower tercile (cold/dry) events for: the ENSEMBLES multi-simulator ensemble (MSE), an
ensemble using the ECMWF simulator with stochastic parametrization (SPE) and an ensemble using the ECMWF simulator without any representation

of simulator uncertainty (CTRL). Bold figures indicate the system with the highest score. From Weisheimer et al. (2011).

T2m Precipitation

May Nov. May Nov.

Cold Warm Cold Warm Dry Wet Dry Wet

MSE 0.178 0.195 0.141 0.159 0.085 0.079 0.080 0.099
SPE 0.194 0.192 0.149 0.172 0.104 0.118 0.095 0.114
CTRL 0.147 0.148 0.126 0.148 0.044 0.061 0.058 0.075
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by Weisheimer et al. (2011). The skill scores turned out
to be poor, but one cannot rule out the possibility that
this was because the simulator in which the parameters
were perturbed was not state-of-the-art for monthly and
seasonal prediction. Further tests are needed within, for
example, the ECMWF system, to evaluate the perturbed-
parameter method. It is certainly not inconceivable that
some combination of perturbed-parameter and stochastic
parametrization techniques may prove optimal.

A key property of stochastic parametrization is its
potential ability to influence the mean state of the simulator
and hence reduce the mean bias of the simulator against
observations. That is to say, the interaction of the imposed
noise with the nonlinearity of the simulator can generate a
‘rectified’ time-mean response. In this way, it is possible that
stochastic parametrization can help alleviate some of the
systematic biases of climate simulators. Figure 10 shows an
example of such alleviation (from Berner et al., 2012, who
also show a positive impact of stochastic backscatter on the
mean state of simulations in the Tropics).

However, a problem revealed by Figure 10 is that the
impact of stochastic parametrization on simulations of
Northern Hemisphere circulation is very similar to the
impact of either increasing simulator resolution (i.e. mod-
ifying the dynamical core), or modifying the conventional
deterministic parametrization schemes. Dynamical reasons
for this ‘degeneracy’ are discussed in Palmer and Weisheimer

(2011). These explain why improving the fidelity of climate
simulators has been so difficult over the years, and why it is
very easy for a simulator code to contain many sets of ‘com-
pensating errors’. This is a key reason why data assimilation
can provide such a powerful tool for enabling simulator
development while minimizing such compensating-error
problems (see Palmer and Weisheimer, 2011, for a discus-
sion). This problem of degeneracy is discussed further in
section 4 below.

4. Stochastic parametrization at the process level

Despite these rather positive results, stochastic parametriza-
tion is still at a rudimentary state of development: the
stochastic parametrization concept described above has only
been applied to the atmospheric component of coupled sim-
ulators. There is clearly a need to extend the concept to the
oceans, the land surface, the cryosphere, the biosphere and
so on. The techniques which can be used to develop stochas-
tic parametrizations are manifold, and the logic inductive
rather than deductive. A technique of particular relevance
is the type of coarse-grain analysis developed in Frederiksen
and Kepert (2006) and Shutts and Palmer (2007). More-
over, the sort of experimental programmes advocated by
Jakob (2010) are just as important for the development of
stochastic parametrization as for deterministic.

Figure 10. Mean systematic error of 500 hPa geopotential height fields for extended boreal winters (December–March) of the period 1990–2005.
Errors are defined with regard to the observed mean field (contours), consisting of a combination of ERA-40 (1990–2001) and operational ECMWF
analyses (2002–2005). Shown are the systematic error of experiments: (a) low-resolution T95 simulator, (b) T95 simulator with stochastic kinetic-energy
backscatter, (c) high-resolution T511simulator and (d) T95 simulator with improved deterministic parameterizations. Contour interval 2 dm. From
Berner et al. (2012). c© American Meteorological Society. Used with permission.
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However, even for the atmospheric component of climate
simulators, there is a need for uncertainty to be incorporated
in the development of parametrization at the process level,
rather than as a ‘bolt-on extra’. For example, in describing the
multiplicative noise parametrization in section 3, reference
was made to the ad hoc parameter µ which clipped the
stochastic noise both in the boundary layer and in the
stratosphere. The parameter was introduced for plausible
reasons, but also because it improved forecast scores.
However, one should not introduce parameters purely
because of empirical pragmatism: they must additionally
have some basis in science. For the stratosphere, the scientific
basis is not hard to find. Much of the diabatic heating in the
stratosphere is associated with infra-red radiation emitted
by carbon dioxide molecules. However, unlike water, carbon
dioxide is well mixed in the atmosphere and there is little
subgrid variability. Hence there is no need to represent
this process stochastically. It is also conceivable that, at
least in sufficiently homogeneous terrain well away from
orography, a typical boundary layer ‘eddy’ associated with
surface form drag is also sufficiently small in scale that
grid-scale stochasticity in grid-scale vertical mixing will be
relatively small. This argues that, instead of having an ad hoc
µ parameter, aspects of stochastic parametrization should
be developed at the process level.

The case for stochastic parametrization at the process
level is fairly clear when discussing processes like convection
(e.g. Lin and Neelin, 2003; Plant and Craig, 2008), and
imaginative new stochastic schemes for parametrizing
different convective cloud families are being developed using
cellular automata (e.g. Bengtsson-Sedlar et al., 2011) or
stochastic lattice models (Khouider et al., 2003: Frenkel et al.,
2011). However, even something as basic (and in principle
well known) as radiation needs stochastic treatment; gridbox
surface radiative fluxes can depend strongly on poorly
resolved near-grid-scale circulations. For example, under a
region of stratocumulus, surface fluxes will depend strongly
on whether in-cloud shallow convection is of the closed
cell or open cell type. It is unrealistic to expect these
small-scale circulations to be deterministic functions of
the large-scale variables; such effects therefore represent a
source of uncertainty in forecasts of surface temperature
that should be incorporated at the process level into the
simulator equations.

However, there is a separate and quite fundamental
argument for the need to develop stochastic parametrization
as an inherent part of simulator development, and not as
a ‘bolt-on’ extra. In section 3 it was shown that stochastic
parametrization had an impact on a simulator’s systematic
error. Consider the implications of this for setting the
parameters α of the deterministic parametrizations P(Xk, α).

For example, the parameter often called ‘convective
entrainment’ represents the strength of the process whereby
environmental air is entrained laterally into convective
plumes. It is well known that climate simulations can be
especially sensitive to the value of this parameter (Stainforth
et al., 2005). However, if the notion of a subgrid ensemble
of convective plumes is not well founded due to power-
law structure and associated scale invariance, then neither
is the existence of a well-defined value for the convective
entrainment parameter. As such, and this is universally
recognized by the scientists who develop climate simulators,
the values of these parameters have to some extent to be
‘tuned’ based on the fit of simulator output to sets of

observations of the large-scale structure of the atmosphere
(either based on weather forecasts or climate integrations).

However, consider the implications of such tuning
exercises if ‘bolt-on’ stochastic parametrizations change the
mean state of the simulator. They imply that values of the
parameters αdet which have been optimally tuned for a
deterministic simulator will not be optimal in a stochastic
simulator. This implies that αdet are not in fact optimal at all.
(See also Tompkins and Berner, 2008.)

This situation is familiar in many other areas of physics.
Consider the vertical motion of a table-tennis ball with mass
m0 inside water. As found by Green in the 19th century, the
motion of the ball obeys Newton’s law F = ma, where F is
the Archimedean buoyancy force, but where m = m0 + M/2
and M is the mass of water occupying the same volume as
the table-tennis ball. In other words, while in the absence
of randomly fluctuating molecules of water the motion of
the ball obeys F = m0a, in the presence of these random
fluctuations the motion of the table-tennis ball behaves as
if it were half full of water. This ‘renormalization’ of mass
has measurable effects: the initial acceleration of the ball
back towards the surface is about seven times smaller than
it would otherwise be. Quantum field theorists recognize
in these arguments the difference between the ‘bare’ and
‘effective’ mass of a particle such as an electron in the
presence of the fluctuating photonic field.

In the same way, we argue here (as indeed was argued
by Frederiksen and Davies, 1997; Frederiksen, 1999) that
parameter tuning for weather and climate simulators must
be done in the presence of parametrized representations of
the inherent stochasticity associated with the scale-invariant
properties of the underlying equations. The notion of ‘bolt-
on’ stochastic parametrization (for use when the simulator is
run in probabilistic ensemble mode) using deterministically
pre-tuned parameter values is not a scientifically sound
procedure.

The focus of attention in this paper has largely been
on the parametrization of physical processes. It has been
argued that even when we know the underpinning equations
with accuracy the resulting parametrizations should be
considered stochastic. However, for parametrizing other
processes (e.g. biological, chemical and perhaps aerosol),
where the underpinning equations are not known with
accuracy, the need for stochastic representations is no less
important and necessary. At the very least, if different
deterministic closures {Ap, Bp, . . . , Cp} have been proposed
for process P, and observations cannot rule out any one of
these closures over another, a particular closures could be
chosen randomly at a given grid box and time step, using
the types of spatially and temporally correlated pattern
generators discussed above.

It is important to emphasize that none of the above
implies that we must not continue to develop, refine,
improve and extend our subgrid parametrizations. This
work remains as critical in the future as it has been
in the past. However, it is argued here that this
development, refinement, improvement and extension
should be performed within an inherently probabilistic, and
hence stochastic, parametrization framework. The author
believes that research and development within this more
general framework will allow innovative ideas to flourish
and parametrization breakthroughs to occur.
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5. Dynamical cores and stochastic processors

It was noted above that stochastic parametrization inevitably
involves the representation of the upscale propagation of
subgrid uncertainty onto the resolved grid. This suggests
that, just as it may be futile trying to develop precise
deterministic parametrizations, so also it is futile to develop
precise deterministic dynamical cores, especially for the
evolution of scales near the truncation scale.

While this may be the case, if we have accounted
statistically for upscale propagation of uncertainty in the
parametrization, then the only disadvantage to retaining a
precise deterministic dynamical core is the computational
burden. However, how would one go about defining a
probabilistic dynamical core which is both consistent with
the equations of motion, and would provide a significant
reduction in computational cost compared with current
deterministic cores? After all, computing a stochastic field
which comprises large numbers of pseudo random-number
generators is certainly not computationally cheap.

However, there is an emerging technology that may
present a way forward here and at the same time provide
a new type of synergy between software development (of
the high-resolution probabilistic Earth-system simulator)
and the very hardware needed to integrate a simulator’s
equations. This technology (e.g. Palem, 2005) is motivated
by the fact that a significant fraction of a conventional
computer’s energy consumption is associated with heat
dissipation at the chip level. Hence, if the processors of a
computer could be designed so that when the voltage across
the individual transistors is reduced, the computer would
operate with significantly reduced energy consumption but
at marginally reduced (e.g. 99% instead of 100%) accuracy,
this capability would certainly be worth exploiting.

Indeed the issue that bit-reproducible computation may
become a thing of the past is beginning to be recognized in
the supercomputing industry too. In a recent presentation
on challenges in application scaling in an exascale environ-
ment, IBM’s Chief Engineer noted (http://www.ecmwf.int/
newsevents/meetings/workshops/2010/high performance
computing 14th/index.html) that increasingly there will be
‘a tension between energy efficiency and error detection’,
and asked whether there needs to be a new software
construct which identifies critical sections of code where
the right answer must be produced – implying that outside
these critical sections errors can (in some probabilistic
sense) be tolerated.

One can perhaps imagine a future energy-efficient
computer with clusters of processors each with different
levels of accuracy, integrating a future-generation dynamical
core. The more accurate the processor, the larger will be the
scales of motion for which it computes tendencies. The ‘right
answers’ will be produced only for the large-scale tendencies.
Since, overall, computations are dominated by estimation
of tendencies nearer the truncation scale, the synergistically
designed probabilistic supercomputer need have relatively
few of these slower energy-intensive processors. On top of
this, the stochastic parametrizations themselves would be
computed using the energy-efficient probabilistic chips.

There is a link here to the work of Lander and Hoskins
(1997), who argued that sophisticated and computationally
expensive parametrization schemes should only be applied
to the more ‘believable’ scales in a simulator, i.e. scales
far removed from the truncation scale. They propose that

simpler parametrization schemes could be used on the
‘unbelievable’ scales near the truncation scale. This idea has
some resonance with the proposal discussed here whereby
less-believable computations near the truncation scale could
be executed on relatively fast energy-efficient probabilistic
processors, leaving computations at the large ‘believable’
scales for traditional energy-intensive bit-reproducible
processors.

What would prevent utterly erroneous computations
from compromising the validity of the computation (e.g.
due to big errors in the exponents of key real numbers
representing the small scales)? It could be prevented partly by
performing numerical checks against prior physical bounds,
and partly by repeating computations several times, and
taking the mode of some small ensemble of obtained values.
This has to be a matter for future research, providing
hardware developments look sufficiently promising.

As well as being more energy efficient, it is possible
that such probabilistic architectures may offer a significant
increase in computational speed-up for climate simulator
codes. If this is so, probabilistic processing may allow a
route to cloud-resolved climate simulation much faster than
anyone had previously expected, again allowing one to
realize the goals of the World Summit on Climate Modelling
(Shukla et al., 2010) in the foreseeable future.

The use of probabilistic Earth-system simulators running
on machines built with stochastic processors, i.e. where
the inherent quantum-mechanical noise associated with
electrons flowing through transistors becomes a resource
rather than a nuisance, provides a new synergy between
software and hardware design in the field of weather and
climate prediction, hitherto unimagined.

6. Probabilistic forecasting and seamless weather pre-
diction: opportunities and possible obstacles

Following Bjerknes (1904), NWP has historically been
considered an example of a deterministic initial-value
problem. The notion of probabilistic forecasting using
ensemble prediction methods has evolved more recently
as a tool to mitigate the effects of chaotic weather variability.
Operational ensemble weather prediction systems have been
implemented since the mid 1980s (Murphy and Palmer,
1986), long before ensemble methods became commonplace
in climate prediction (see the review by Lewis, 2005).
Following considerable investment in ensemble prediction at
a number of NWP centres since these early days, most NWP
centres now develop both a high-resolution deterministic
forecast system and a lower-resolution EPS, and strategic
goals are targeted separately on improvements in both
deterministic scores for the high-resolution system (e.g. RMS
error or anomaly correlation coefficient) and probabilistic
scores for the EPS (e.g. ranked probability skill score).

These goals are individually challenging and require the
determined effort of scientists across a range of disciplines
(numerics, parametrization, data assimilation, etc). This
presents important questions about allocation of resources.
How, for example, should an NWP centre partition its
human resources to meet both the deterministic strategic
goal on the one hand and the probabilistic target on the
other? A common view is that if most human resources
are put into meeting the deterministic goal, the resulting
improvements to the deterministic forecast system will
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Figure 11. 500 hPa geopotential anomaly correlation coefficient over Northern Hemisphere Extratropics for March–May 2011. Light solid line:
high-resolution (T1279) ECMWF deterministic forecast. Dashed line, unperturbed control forecast from the (T639) ECMWF ensemble prediction
system; dotted line, deterministic forecast based on the ensemble average over the members of the ECMWF ensemble prediction system.

necessarily benefit the EPS and help ensure the probabilistic
target is also met.

Unfortunately, this concept of ‘trickle-down’ does not
apply to the development of stochastic parametrization.
Weather simulators with stochastic parametrizations cannot
produce forecasts with as low RMS error, or as high
anomaly correlation coefficient, as equivalent simulators
with deterministic parametrizations (see Figure 5(a) for an
explicit illustration of this in the parametrized Lorenz ‘96
model). The reason why a probabilistic simulator will not
outperform a comparable deterministic simulator in terms
of deterministic scores is similar to the reason why the
most skilful ‘deterministic’ forecasts are associated with the
ensemble-mean forecast (see Figure 11). The reason why an
ensemble-mean forecast has especially high deterministic
skill is that the relatively unpredictable components of
the flow are ‘damped out’ in an ensemble-mean field.
However, a penalty is paid for such dynamical smoothing.
An ensemble-mean forecast is unlikely to predict the
occurrence of a severe weather event, if such an event
is relatively unpredictable; the ensemble-mean forecast
‘hedges’ towards climatology and away from such events.
Now, as discussed in sections 2 and 3, a deterministic bulk-
formula parametrization can be considered as providing an
estimated mean tendency based on a putative ensemble of
inherently unpredictable subgrid processes, and hence will
produce a ‘damped’ simulation of the flow at sub-synoptic
scales. In the same sense that an ensemble-mean forecast
has low deterministic error, a simulator with deterministic
bulk-formula parametrization will tend to produce forecasts
with lower RMS error than an equivalent simulator with
stochastic parametrization, particularly for near grid-scale
circulations; recall (cf. Figure 3) that each realization of
the stochastic parametrization is designed to represent a
potential realization of the subgrid flow, rather than an
ensemble average. However, as with the ensemble-mean
forecast, there is a price to pay for this smoothing: a tendency
for the simulator to hedge away from simulating extreme
flows. This effect will obviously be strongest for small scales.
However, as discussed in section 2.2, small-scale errors can

be expected to propagate, intermittently but rapidly, to
larger-scale components of the flow.

Put bluntly, stochastic parametrization is anathema to
the strategic goal of maximizing deterministic skill! As such,
development of stochastic parametrization at the process
level, the type of activity discussed in section 4, will not
naturally emerge from research that is focused primarily at
improving the high-resolution deterministic forecast system.

Should NWP centres therefore start planning for the day
where they focus exclusively on developing probabilistic
forecast systems, drop their higher-resolution deterministic
predictions, and measure progress primarily in terms of
improvements to probabilistic scores?

Some may argue against this, noting that the enhanced
skill of higher-resolution deterministic forecast systems
justifies their continued separate development. Unques-
tionably, this was true in the past: in the early days of
operational EPS, the deterministic skill of the unperturbed
EPS control forecast was substantially poorer than that
of the higher-resolution deterministic forecast. However,
these days, as shown in Figure 11, the skill of the higher-
resolution deterministic forecast is no longer substantially
greater than that of the EPS. It should certainly not be con-
cluded from this that there is no need for the development of
high-resolution simulators. There is evidence that at T1279
resolution extreme weather events (such as hurricanes) can
be simulated with greater realism than at T639 resolution.
Rather, the point of Figure 11 is that the impact of high
resolution is more subtle than it was in the past, and much
less apparent in headline strategic scores such as the 500 hPa
anomaly correlation coefficient. In section 2.2, the ques-
tion was raised: how can we ensure that the advantages of
integrating simulators at higher and higher resolution will
not somehow be compromised by the intermittent upscale
propagation of error? That is to say, how can we produce
high-resolution forecast systems that are reliable (the overall
theme of this paper)? The author believes that the answer to
this question is that future high-resolution forecast systems
must be explicitly probabilistic.
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Others, arguing against this conclusion, may claim that
weather forecast offices will continue to require high-
resolution deterministic forecasts for the foreseeable future,
since weather forecast customers demand precise determin-
istic forecasts, and find probabilistic forecasts difficult to
understand and difficult to use. This argument becomes
yet stronger when one realizes that the computational cost
of a single high-resolution deterministic forecast is small
compared with the cost of a full EPS.

Why is it that the public wants and expects detailed
deterministic forecasts? Certainly, nobody wants an
uncertain forecast if a perfect deterministic forecast is
available. But the latter is not available and never will
be. In the author’s opinion, a key reason why the
public expects deterministic forecasts is simply because
that is what they have been given and hence led to
expect, ever since the days of Fitzroy when the first
weather forecasts were made available to the general
public. However, in cases where uncertainty is routinely
expressed to the public, e.g. in the US National Hurricane
Center’s ‘cone of uncertainty’ for hurricane track predictions
(http://www.nhc.noaa.gov/aboutcone.shtml), the author’s
own informal research suggests that the public understands
and indeed respects these uncertain predictions, and
consequently no longer demands deterministic predictions.

Independently of whether the public are ready to accept
the notion of an explicitly uncertain forecast, perhaps there
is an argument that by focusing on probabilistic forecasting
methods, the traditional skills of the weather forecaster will
somehow be undermined. However, the author believes
that the skills of human forecasters will be needed as
never before when forecasts are primarily probabilistic in
nature. In particular, there will be a need for a greater
dialogue between forecasters and customers to help guide
individual customers formulate weather-sensitive decision
strategies appropriate to their circumstances. A simple (and
rather idealized) example is based on the cost/loss model
(Murphy, 1969). If a customer incurs a loss L if a particular
weather event E (e.g. based on temperature, precipitation,
wind, or some combination thereof) occurs, but can take
protective action at cost C, then it makes rational sense
to take this protective action on those occasions when the
forecast probability of E exceeds C/L. In these circumstances,
the job of the forecaster will be to ‘tease out’, at least
approximately, the customer’s C/L and therefore enable
that customer to decide on the optimal threshold probability
above which preventative action should be taken. Using this
cost/loss model, Figure 12 shows the ‘potential economic
value’ of the EPS, compared with that the high-resolution
deterministic forecast – the latter can be considered as a
probabilistic forecast producing only probabilities of one or
zero – based on precipitation events at forecast day 4. A
‘potential economic value’ of unity would correspond to a
hypothetical perfect deterministic forecast, and a ‘potential
economic value’ of zero would correspond to the value
obtained by knowing only the climatological probability of
E. The value of the EPS is substantially higher than that
of the high-resolution deterministic forecast – indeed, for
a range of users, the high-resolution deterministic forecast,
by itself, has no value at all over and above a decision based
only on the climatological probability of E. Once again, it
should be stressed that this does not at all imply that there
is no merit in high resolution. Rather, Figure 12 suggests
that the value of high resolution is masked when assessed

Figure 12. Potential economic value (Murphy, 1969) as a function of user
cost/loss ratio, based on prediction of rainfall exceeding 1 mm per day
over the European domain for March–May 2011 (1 = value of a perfect
deterministic forecast, 0 = value associated with a climatological probability
forecast). Solid line for ECMWF Ensemble Prediction System; dotted line
associated with ECMWF high-resolution deterministic forecast.

in deterministic mode. There is no reason to doubt that a
T1279 EPS would have higher ‘potential economic value’
than the current T639 EPS, especially for severe events E.

In practice, decision strategies will be much more
complex than suggested by a simple cost/loss models,
for example requiring knowledge of the customer’s
‘utility function’ which maps, usually nonlinearly, multiple
correlated weather variables to some quantity relevant to
the customer (number of ice creams sold, megawatts of
electricity produced). It will be the job of tomorrow’s
weather forecaster to help the weather-sensitive customer
to formulate his or her decision strategy in these realistic
circumstances. It is interesting to note that, in this respect,
great advances have been made recently in applying
ensemble-based probability forecasts to provide flood
risk assessments for farmers and community leaders in
developing countries in the Tropics, and these have been
shown to have genuine value in saving lives and property
(Webster et al., 2010).

In their interface with the general public, media fore-
casters need not only to be open about the inherent
uncertainty in forecasts, but they should routinely relay
to the public the fact that techniques exist to quantify
this uncertainty. This does not necessarily mean display-
ing isopleths of probability on TV. However, during media
forecasts, forecasters could refer to web sites, even bet-
ter to interactive displays (‘press your red button’), where
‘fan charts’ for temperature and rainfall, similar to those
used by the Bank of England in forecasting inflation rate
and gross domestic product (http://www.bankofengland.
co.uk/publications/inflationreport/irfanch.htm), can be dis-
played for key cities.

In conclusion then, it is proposed that, in the coming
decade, NWP centres should start to focus exclusively on
developing probabilistic forecast systems, dropping their
separate higher-resolution deterministic forecast systems,
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and, importantly, measuring progress, and formulating
strategic goals, principally in terms of improvements to
probabilistic scores. Such a strategy would certainly be
consistent with the aims of forecast offices to provide
reliable predictions of severe weather: no forecast can
be considered reliable without an accurate assessment of
forecast uncertainty, and severe weather events are often
the most unpredictable and hence uncertain. The benefits
of this, in addition to that of improving the reliability of
weather forecasting per se, would be that improvements
made to simulators on the weather time-scale would likely
also improve the reliability of simulators for longer-term
climate prediction.

7. Towards a seamless probabilistic Earth-system simu-
lator for weather and climate prediction

As discussed in the Introduction, output from comprehen-
sive climate simulators informs mitigation policies, climate
adaptation strategies, efforts to understand the impacts of
climate geoengineering, and generally reduces society’s vul-
nerability to current and future climate. One is hard pressed
to think of examples where computer code has such societal
relevance! And yet, as discussed above, there are substan-
tial challenges (theoretical, computational and human) that
need to be overcome if we are to progress significantly to the
goal of providing society with reliable estimates of future
climate – regional and global.

In discussing possible ways to meet these challenges,
consider by analogy the state of the European civil aircraft
industry in Europe in the mid 20th century. At this time,
all the major European countries produced their own civil
aircraft. However, it was realized that aircraft were becoming
too complex and too expensive for individual countries
to develop and manufacture independently. Within this
milieu, the Airbus consortium (http://www.airbus.com/)
was formed. At the time, there must have been much
agonizing at the national level as to whether national
aerospace industries were doing the right thing getting
together in this way. In retrospect, there can be little doubt
but that it was. And so, within the Airbus consortium, these
same national aerospace industries now focus on specific
aspects of the design and production of aircraft in their fight
for market share with their great US rival, Boeing.

Hence, by analogy, we can imagine a multi-national
Earth-system simulator supported by teams of scientists
from national climate and academic institutes. Different
teams would focus on different aspects of the simulators:
dynamical cores, oceans, clouds, aerosols. etc., and on the
design of experiments which integrate these aspects together.
All should contribute to the analysis and diagnosis of results.
To support this, computational resources would be available,
not only for operational integrations, but also for plentiful
research experimentation. Results from the small number
of simulators worldwide might continue to be combined in
a multi-simulator ensemble, but since each is now based on
stochastic-dynamic closure, the resulting ensemble would
be much less prone to the type of systemic failure that
current generation multi-simulator ensembles are capable
of. National weather services would still play a crucial role
in development work, in conducting scientific experiments,
and in communicating the results from the science to their
governments and society alike.

Is this a possible framework for the development of
future Earth-system simulators? To some extent it already
is. For example, within Europe, many climate institutes
use the same (NEMO; http://www.nemo-ocean.eu/) ocean
simulators. Indeed, development of the EC-Earth simulator
(Hazeleger et al., 2010) provides a specific example of how
international cooperation can be successful, having been
developed from the ECMWF seasonal forecast simulator,
ECMWF itself being an outstandingly successful example of
international cooperation in the context of NWP.

Given the merits of poolings resources, why would we
not want to go further down this route of rationalization?
The key argument for not adopting the ‘Airbus’ model
is that we need extensive simulator diversity in order to
estimate prediction uncertainty. However, the stochastic
science discussed in the previous sections (and this is
why the discussion has been so extensive) suggests that an
alternative approach to representing simulator uncertainty is
beginning to emerge, and, on time-scales where verification
data exists, this alternative approach can outperform that
provided by conventional multi-simulator ensembles. That
is, the argument for maintaining the status quo of extensive
simulator diversity is being undermined by scientific
developments.

It should be stressed that it is not being suggested
here that stochastic parametrization implies that all we
need is one ‘World Weather and Climate Simulator’.
Airbus has undoubtedly been successful, not only because
it can draw from the pooled resources of European
aerospace industries but also because it has a competitor
from another geopolitical grouping. Similarly, one would
imagine that if there was some rationalization of climate
simulator development effort, which embraced the notion
of stochastic parametrization as the primary means to
estimate simulator uncertainty, then we would still have
enough (quasi-)independent Earth-system simulators to
foster competition and creativity. What is a desirable number
of comprehensive Earth-system simulators? This obviously
depends on an assessment of the minimum human and
computational resources needed to develop and maintain
an Earth-system simulator. However, the author would
broadly concur with the findings of the World Summit on
Climate Modelling (Shukla et al., 2010), that development of
‘a small number’ based around major geopolitical groupings
might be ideal.

In the course of this paper, evidence has been given as
to how the development of explicitly probabilistic weather
and climate simulators will lead to more reliable estimates
of uncertainty. At the beginning of the paper, it was also
suggested that these methods might be able to actually
reduce uncertainty. In considering this possibility, let us
focus here on what must surely be the most important, as
well as the most uncertain, of all the feedbacks in the climate
change problem: that associated with cloud. As is well known
(Solomon et al., 2007), even the sign of the cloud feedback
is uncertain.

One of the problems in thinking about the notion of
‘cloud feedback’ is that a world without cloud, and hence
without cloud feedback, would be utterly alien to us:
clouds are absolutely intrinsic to the circulation patterns
we observe around us. Not only are clouds determined
by the temperature and humidity structure associated with
these circulation patterns, but also clouds in turn are key
to determining these circulation patterns, both locally and
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remotely. For example, anomalous latent heat release in
convective cloud systems over the Caribbean may be key
to setting up a blocking anticyclone over Europe, while the
stratus decks that form locally in the vicinity of the blocking
anticyclone are key to determining the surface temperature
under the block.

This means that we cannot treat the problem of
cloud feedback solely as a problem in atmospheric
thermodynamics; the problem is as much dynamic as
thermodynamic. For the sake of argument, let us consider
climate as a dynamical system with distinct nonlinear regime
structures (Palmer, 1998; Straus et al., 2007) in both the
Tropics and Extratropics. These regimes will in turn have
distinct cloud properties (Williams and Webb, 2009): a
blocking anticyclone may be dominated by relatively thin
stratus clouds in winter and cirrus clouds in summer, while a
cyclonic weather regime will contain significant amounts of
thick nimbostratus cloud at all times of year. From this
dynamical perspective, a key element of understanding
the cloud feedback problem lies in estimating reliably
how anthropogenic forcing will change the frequencies of
occurrence of the regimes. (Changes to the structure of
the regimes may also be important but, depending on the
stability of the regimes, this may be a secondary aspect of
the problem.) That is to say, changes in these frequencies
of occurrence will be one of the key factors in determining
whether upper- or lower-level clouds increase or decrease
as a result of anthropogenic climate change. Small wonder,
then, that current climate simulators have such difficulty in
simulating the sign of cloud feedback with any consistency.
As discussed above, these same simulators have difficulty
simulating the statistics of observed weather regimes.

Hence, to really make progress in reducing the uncertainty
in cloud feedbacks it will be essential that the statistics
of weather regimes are simulated correctly: their three-
dimensional structure, their embedded cloud properties and
their frequency of occurrence (see also Stephens, 2005). This
is a profoundly challenging dynamical problem, and results
suggest that the current generation of climate simulators is
not fully up to the challenge.

The same arguments could be applied to another of the
important uncertainties in climate prediction: the impact
of aerosols. Here the key uncertainties relate to the indirect
effect of aerosols, i.e. through their modification of cloud.
Again, this indirect effect will be regime dependent, implying
that we will never be able to assess aerosol impact reliably in
the atmosphere without an accurate simulation of structure
and frequency of occurrence of weather regimes.

With this in mind, we can suggest why the proposal for
inherently probabilistic Earth-system simulators will reduce
uncertainty in predictions of climate:

(a) As discussed above, representing simulator uncer-
tainty by stochastic parametrization undermines the
inherent need for a large diversity of simulators,
meaning that it will be possible to pool human and
computational resources. Economies of scale will
enable climate scientists to have dedicated access
to top-of-the-range supercomputers, enabling key
physical processes to be simulated, including in situ
Rossby wave breaking, key for maintaining weather
regimes against dissipation (Woollings et al., 2008),
and remote tropical convective systems which help
‘force’ these regimes.

(b) Being more consistent with the underlying equations
of motion, it could be argued that if there are to be
breakthoughs in parametrization, e.g. of the effects
of unresolved cloud systems, they are more likely to
occur within a more general probabilistic framework,
than within the traditional deterministic framework.

(c) Development of seamless probabilistic weather and
climate simulators will enable sophisticated diagnostic
tools from data assimilation to be used to reduce
climate prediction uncertainty (Rodwell and Palmer,
2007), e.g. based on studies of biases in analysis
increments, composited on specific weather regimes.
The use of data assimilation in assessing stochastic
parametrization was illustrated in Figure 8.

(d) There is evidence that stochastic parametrizations
can improve directly estimates of the frequency of
occurrence of weather regimes (Jung et al., 2005).
The reason relates to the rectification of the flow by
stochastic noise. As a simple analogy, imagine a ball
bearing moving in a potential with multiple minima;
an overly damped system will lead to the ball bearing
spending too much time in the dominant well and
this will be reflected in a bias in the time-averaged
position of the ball.

8. Conclusions

Compared with the economists, weather and climate
scientists do indeed know their equations, at least as they
relate to the physics of weather and climate. However, these
equations cannot be solved by pencil and paper. Algorithmic
representations of the equations of motion necessarily
involve errors, and with conventional numerical algorithms
based on deterministic closures these errors appear to lead to
substantial biases and considerable uncertainty in simulating
climate. Some discussion has been given to the possibility
that convergence to the ‘true’ underlying equations with
increasing resolution may be exceptionally slow, due to the
‘−5/3’ power law for atmospheric energy. Some technical
discussion has been given to an alternative strategy for
closing the equations, where the inherent uncertainty in
any algorithmic representation of the underlying equations
is recognized explicitly. It is suggested that breakthroughs
in the parametrization problem, if they are to occur, will
be more likely within a stochastic framework than in the
traditional deterministic framework.

On time-scales where verification data exist, these stochas-
tic methods are beginning to outperform conventional
multi-simulator ensembles. However, there is much work to
be done before all relevant Earth-system parametrizations
can be said to have been developed in this probabilistic way.
Indeed, it has been concluded that focusing excessively on
the traditional challenge in NWP, of reducing determinis-
tic measures of forecast error, may increasingly become an
obstacle to the seamless development of reliable probabilis-
tic weather and climate simulators. It was argued that it may
indeed be time to consider focusing operational weather
forecast development entirely on high-resolution ensemble
prediction systems.

A key aspect of this paper has been discussion on
some of the implications of a move towards probabilistic
Earth-system simulation – implications that transcend the
technical aspects of stochastic parametrization. In particular,
by undermining the argument for a large pool of quasi-
independent simulators, the stochastic parametrization
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programme provides new support for one of the key
conclusions of the World Summit on Climate Modelling
(Shukla et al., 2010): for a pooling of human and
computational resources amongst climate institutes and for
a substantial rationalization of development work towards a
very small number of independent Earth-system simulators.

Given the importance and urgency of predicting Earth’s
climate as accurately as science and technology allow, it is
time to give serious thought to such change.
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