

АВИАЦИОННОЕ МЕТЕОРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: ЧПП И ВЕБ-ГИС

Начальник отдела МО ЕС ОрВД ФГБУ «Авиаметтелеком Росгидромета» Ю.Н. Нарышкина

> +7 (499) 795 2002 juliaavia@mail.ru

Новосибирск, апрель 2017

ЧПП В ЦЕЛЯХ АВИАЦИОННОГО ОБЕСПЕЧЕНИЯ

- Развитие науки и технологий разработка численных моделей атмосферы с 50-х гг. XX в.
- Создание 12 РЦЗП 2 ВЦЗП: SIGWX, UW/T + (2005-2010) AUTO CB, ICE, TURB
- Развитие и использование ЧПП (поля, таблицы, графики)
- Создание в государствах систем прогнозирования ЧПП (постпроцессинг) в сочетании с локальными данными наблюдений
- Наукастинг на основе имеющихся данных наблюдений (радар, ЧПП, ИСЗ, дополнительные датчики)
- Распространение выходной продукции численных моделей в коде GRIB и создание продукции для синоптиков и авиационных пользователей, включая задачи по УВД
- Использование геоинформационных систем (ГИС) в виде АРМ и развитие обеспечения через веб-ресурсы (Веб-ГИС)

АВИАЦИОННОЕ ПРОГНОЗИРОВАНИЕ

• Прогнозирование по маршрутам полетов

UW/T, SIGWX, SIGMET (WS, WV, TC)

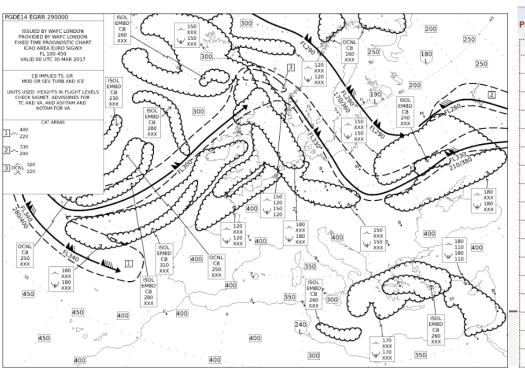

• Прогнозирование по районам полетов (ниже FL100 - FL150 - FL160)

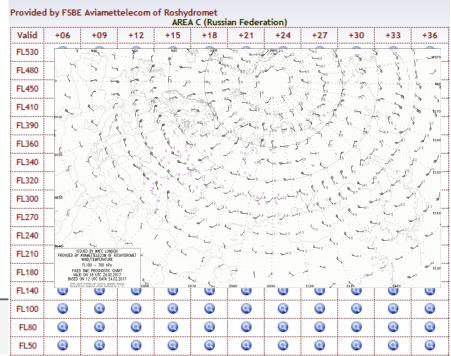
GAMET, AIRMET

• Аэродромное прогнозирование

TAF, TREND, предупреждения по аэродрому, предупреждения о сдвиге ветра

- Периоды действия прогнозов (2, 4, 6, 9, 24, 30)
 - Ветер (включая сдвиг ветра)
 - Видимость
 - Явления погоды
 - Облачность
 - Температура воздуха
 - **Обледенение**
 - **Турбулентность**
 - Горные волны
 - О Вулканический пепел
 - О Радиоактивные материалы
 - О Космическая погода

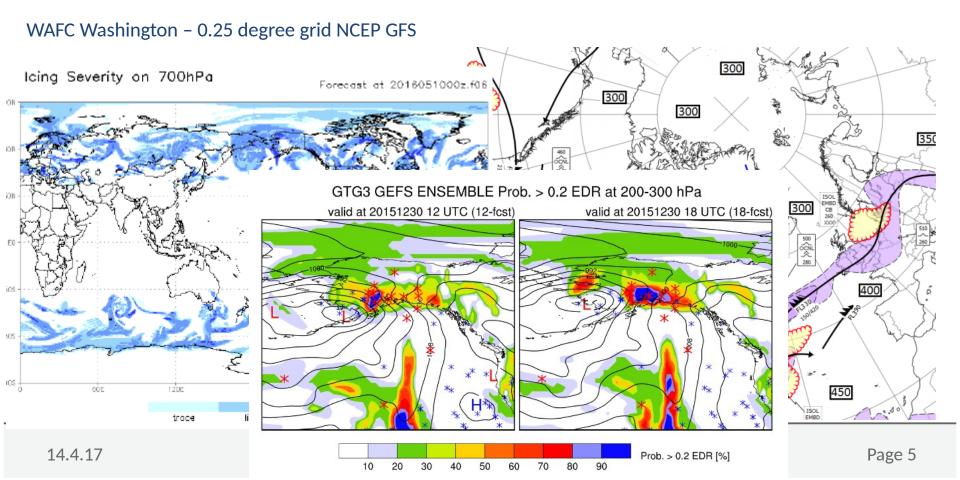

ПОЛЕТНАЯ ДОКУМЕНТАЦИЯ ПРОГНОЗЫ ВЦЗП ЛОНДОН-ВАШИНГТОН


4 раза в сутки (по данным наблюдений за 00, 06, 12, 18 UTC)

- BUFR: SIGWX+24 ч
 - **✓** SWH
 - ✓ SWM: North Atlantic, Europe, Middle-East, India

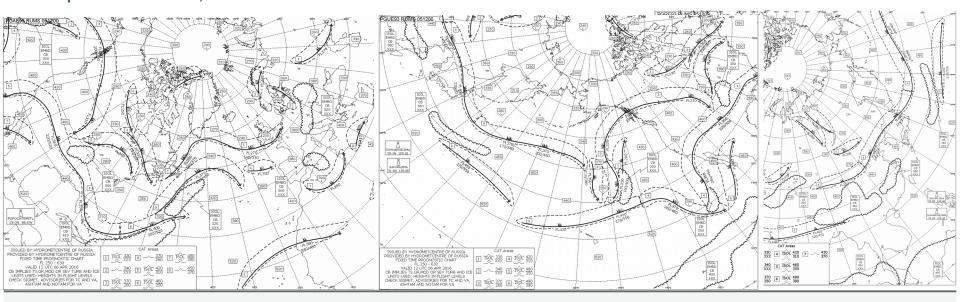
- **GRIB2**: **UW/Т**: Прогнозы ветра и температуры по высотам
 - ✓ 11 сроков (+6 ч, +9 ч,...+36 ч)
 - ✓ 17 FL
 - ✓ Визуализация АМТК http://www.metavia.ru/

Прогнозы ветра и температуры ВЦЗП Лондон



ПРОГНОЗЫ ВЦЗП ЛОНДОН-ВАШИНГТОН

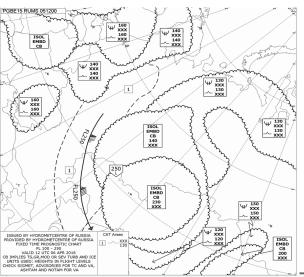
- 4 раза в сутки (по данным наблюдений за 00, 06, 12, 18 UTC)
- GRIB2: AUTO CB, ICE, TURB
- распространение 1,25

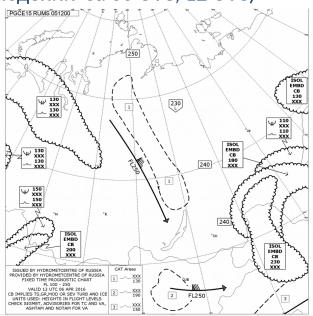


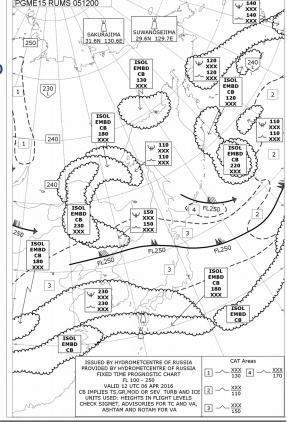
ПОЛЕТНАЯ ДОКУМЕНТАЦИЯ (ПОЛЕТЫ ПО РОССИИ) Договор с ФГБУ «Гидрометцентр России» с 2002

Прогнозы особых явлений погоды в виде карт

- SWH для слоя FL250 FL630 на бланке Северного полушария с дальнейшей разбивкой на три бланка:
- бланк 1 Евразия + Арктика
- бланк 2 Дальний Восток + северная часть Тихого океана + Северная Америка
- бланк 3 Северная Америка + Северная Атлантика + Европа
- 2 раза в сутки (по данным наблюдений за 00 UTC, 12 UTC)
- Прогнозы +24 ч, +30 ч

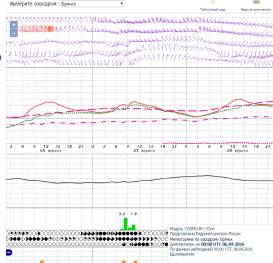


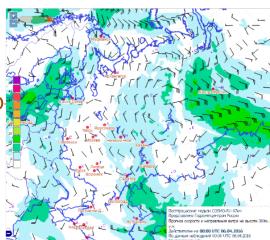



ПОЛЕТНАЯ ДОКУМЕНТАЦИЯ (ПОЛЕТЫ ПО РОССИИ) Договор с ФГБУ «Гидрометцентр России» с 1 июля 2009

Прогнозы особых явлений погоды в виде карт

- **SWM** для слоя FL100-FL250 на трех бланках, охватывающих воздушное пространство Российской Федерации с разбивкой на три региона:
- бланк 1 Европа
- бланк 2 Сибирь
- бланк 3 Дальний Восток, включая юго-восточную Азию и Японию
- 2 раза в сутки (по данным наблюдений за 00 UTC, 12 UTC)
- Прогнозы +24 ч, +30 ч





Договор с ФГБУ «Гидрометцентр России» с 1 июня 2011

www.metavia2.ru

- QNH на фиксированные сроки ГЛОБАЛЬНАЯ СПЕКТРАЛЬНАЯ МОДЕЛЬ
- Метеограммы по **18** аэродромам COSMO-RU 07км
- Разорванная и сплошная слоистообразная облачность
- Слоистообразная облачность COSMO-RU 07км
- Конвективная облачность COSMO-RU 07км
- Количество конвективной облачности COSMO-RU 07км
- Высота нулевой изотермы COSMO-RU 07км
- <u>Температура воздуха на высотах</u> COSMO-RU 07км
- <u>Скорость и направление ветра на высотах</u> COSMO-RU 07км
- Сильное обледенение COSMO-RU 07км
- Умеренное обледенение COSMO-RU 07км
- Интенсивность турбулентности на нижних уровнях (SFC/FL100) COSMO
- Умеренная турбулентность на верхних уровнях ПЛАВ
- Сильная турбулентность на верхних уровнях ПЛАВ
- Умеренная турбулентность на средних уровнях ПЛАВ
- Сильная турбулентность на средних уровнях ПЛАВ

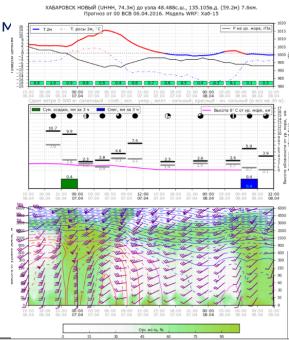
Договор с ФГБУ «Дальневосточное УГМС» с мая 2015

WRF-ARW – Дальневосточный регион (Хабаровский, Приморский и Камчатский края, Амурская и Сахалинская области, Чукотский автономный округ и Еврейская автономная область)

http://khabmeteo.ru/avia/

МЕТЕОГРАММЫ (88 ПУНКТОВ)

Блок 1

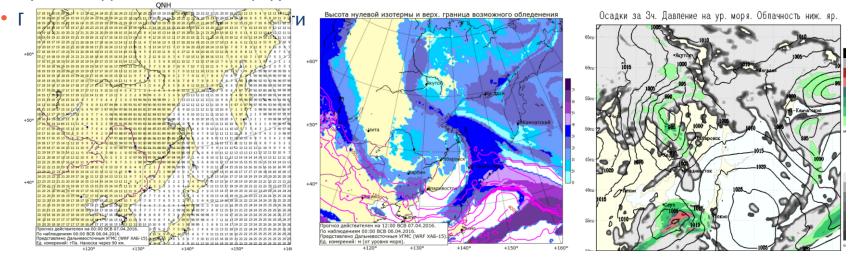

- давление на уровне моря, приведенное по реальной атмосфере;
- температура воздуха и температура точки росы на высоте 2м;
- вертикальный сдвиг горизонтальной составляющей ветра в слое 0-500 м

Блок 2

- верхняя и нижняя границы общей облачности,
- 3-х часовые суммы осадков с разделением по фазам;
- индекс грозовой активности В.Т. Леншина
 и/или вероятность конвективных явлений (ливень, гроза, град)

Блок 3

- направление и скорость ветра по высотам
 (от земли до 6000 м со шкалой в метрах над уровнем моря);
- высота нулевой изотермы



Договор с ФГБУ «Дальневосточное УГМС» с мая 2015

WRF-ARW – Дальневосточный регион (**Хабаровский, Приморский и Камчатский края, Амурская и Сахалинская области, Чукотский автономный округ и Еврейская автономная область**)

В ВИДЕ КАРТ

- Прогноза облачности нижнего яруса, сумм осадков за 3 ч и приземного давления
- Прогноза ветра (скорость и направление или линии тока) на высоте 10 м с выделением зон сильных ветров
- Прогноза высоты нулевой изотермы и верхней границы слоя умеренного обледенения
- Прогноза давления QNH с цифровой наноской

Договор с ФГБУ «СибНИГМИ» с 15.02.2017

COSMO-SIB по Урало-Сибирскому региону (55 в.д 50 с.ш. - 130 в.д 70 с.ш.) (GFS в качестве резерва)

• В ВИДЕ МЕТЕОГРАММ и ТАБЛИЦ (80 ПУНКТОВ)

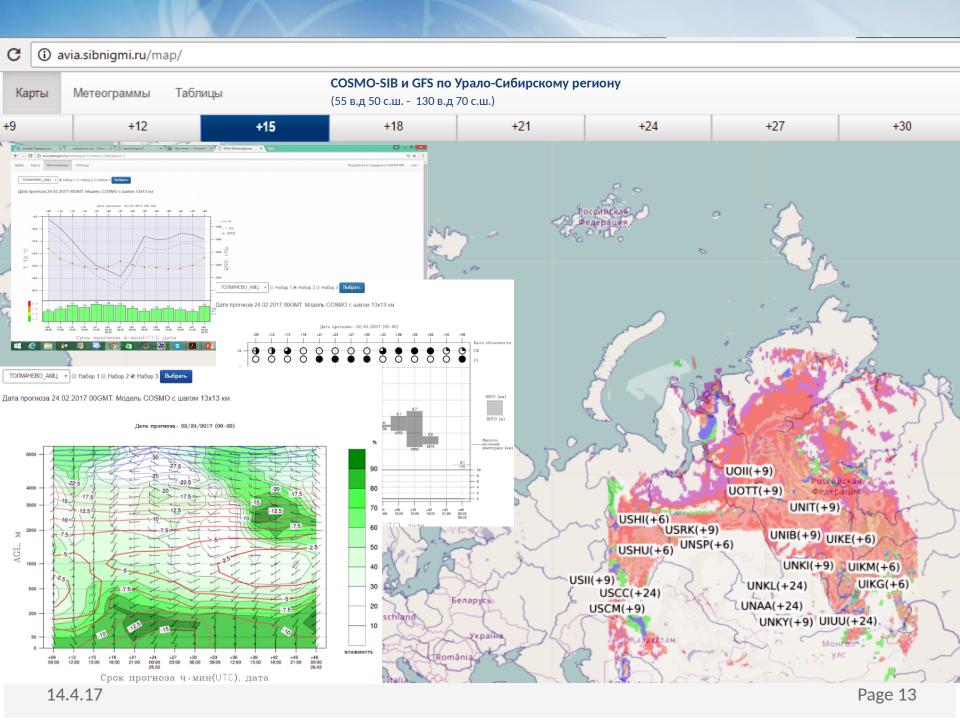
Набор 1:

- прогноз давления, приведенного к среднему уровню моря по стандартной атмосфере (QNH), а также в виде таблиц;
- температура на высоте 2 м;
- температура точки росы на высоте 2 м;
- максимальный по модулю вертикальный сдвиг ветра (м/с/30 м) в слое 10 м 600 м

Набор 2:

- верхняя и нижняя граница общей облачности;
- общее количество облачности (в октантах);
- 3-часовые суммы осадков с разделением по фазам (прогнозы рассчитываются с дискретностью 3 ч);
- индексы гроз: Вайтинг, Jeff, Li (начиная с 1.05.2017);
- высота нулевой изотермы

Набор 3:


- температура, относительная влажность, направление и скорость ветра по высотам (от земли до 6000 м со шкалой в метрах над средним уровнем моря); высота нулевой изотермы

Договор с ФГБУ «СибНИГМИ» с 15.02.2017

COSMO-SIB по Урало-Сибирскому региону (55 в.д 50 с.ш. - 130 в.д 70 с.ш.) (GFS в качестве резерва)

- векторные слои на базе веб-ГИС ресурса:
 - прогнозы скорости и направления ветра на высоте 10 м с выделением зон сильных ветров (15 м/с и более);
 - прогноз скорости, направления ветра и температуры на эшелонах полетов
 - прогнозы высоты нулевой изотермы;
 - общее количество облачности (в октантах);
 - прогнозы высоты нижней границы облачности нижнего яруса;
 - прогнозы высоты нижней/верхней границ кучево-дождевой облачности;
 - прогнозы приземного давления;
 - прогнозы давления, приведенного к среднему уровню моря по стандартной атмосфере (QNH) с цифровой наноской в узлах сетки;
- Прогноз условий обледенения с 01.05.2017
- Прогноз условий турбулентности с 2018

МЕЖДУНАРОДНЫЙ ОПЫТ: ГЕРМАНИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

КОМБИНАЦИЯ «СЫРЫХ» ДАННЫХ ЧПП (NUMERICAL WEATHER PREDICTION (NWP))
ФИЗИЧЕСКИЙ ПОСТПРОЦЕССИНГ
MODEL OUTPUT STATISTICS (MOS)

SYNOP

METAR

Грозопеленгация (nowcast, Europa)

RADAR (Europa 2km x 2km)

NWP (ЕЦСПП)

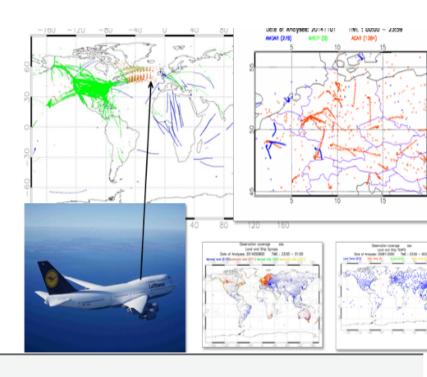
MOS TAF
MOS TREND

AUTO TAF AUTO TREND

Интегрированная система прогноза модели ЕЦСПП (два раза в сутки) 00 UTC для TAF c 10 UTC 12 UTC для TAF c 22 UTC

МЕЖДУНАРОДНЫЙ ОПЫТ: ГЕРМАНИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

Научный отдел DWD:


испытания AUTO TAF с 1998 (9 ч, 24 ч и 30 ч) на основе MOS

Пример прогнозов по a/д Frankfurt

DWD AUTO TAF EDDF 061020Z 0611/0717 24005KT CAVOK

BECMG 0618/0620 03005KT BECMG 0710/0712 12005KT TEMPO 0714/0716 21006KT=

- Каждая точка прогноза утверждается специальным научным отделом DWD
- Автоматические процедуры подготовки прогнозов экономят время для анализа – метеоролог корректирует AUTO TAF на основе своего опыта
- DWD AUTO TAF используется при подготовке к полету

МЕЖДУНАРОДНЫЙ ОПЫТ: ГЕРМАНИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

ADWICE: Система диагностики и предупреждения об обледенении ВС

- 1998 Немецкий аэрокосмический центр, DWD и Институт метеорологии и климатологии
- 2004 оперативный запуск в DWD
- Используется в Немецком консультативном центре для авиации (German Advisory Centres for Aviation)
- ADWICE определяет районы с переохлажденными жидкими каплями в атмосфере, где возможно обледенение BC

Система состоит из 2-х алгоритмов

- Прогностический алгоритм модель ICON
- Алгоритм диагноза обледенения реализует слияние прогноза, данных наблюдений и дистанционного зондирования (спутниковые данные) для описания текущей опасности обледенения
- Оба алгоритма создают трехмерную продукцию, содержащую информацию об ожидаемом

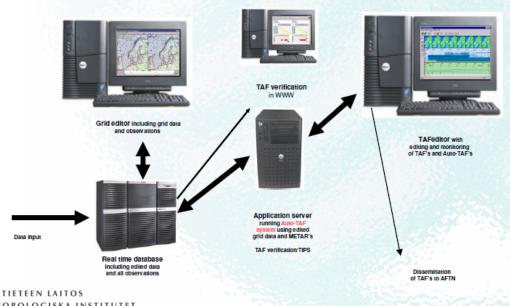
ADWICE: интенсивность обледенения 11 января 2017,

05h UTC, FL100 (www.flugwetter.de)

Green: light icing

Yellow: moderate icing

Red: severe icing



МЕЖДУНАРОДНЫЙ ОПЫТ: ФИНЛЯНДИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

Система AUTO TAF

- Редактор ЧПП и данных наблюдений
- Сервер приложений для подготовки AUTO-TAF, использующие ЧПП и METAR + верификация ТАF
- Редактирование и мониторинг ТАF и AUTO-TAF
- Базы данных в режиме реального времени, отредактированные данные и все наблюдения
- Верификация ТАБ

- Auto-TAF's are made from:
 - model data (levels of ECMWF & HIRLAM)
 - METAR's
 - edited (by forecaster) data

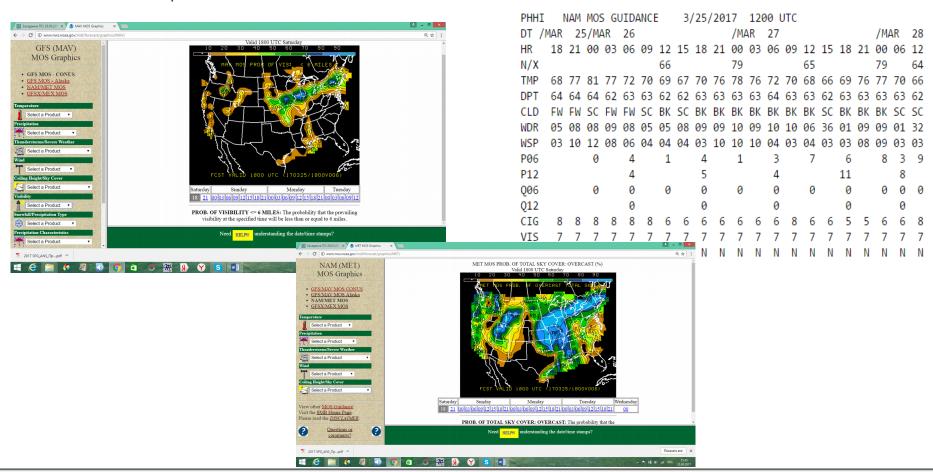
Kangasniemi & Kilpinen

15 6 200

МЕЖДУНАРОДНЫЙ ОПЫТ: ИСПАНИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

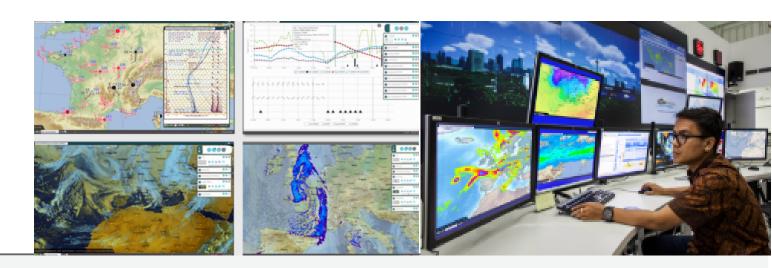
Система прогнозирования

- Основные базовые элементы
 - цифровая база прогностических данных Испании (BDDP)
 - генерация основных цифровых данных путем интерактивной модификации BDDP
 - автоматическая разработка и распространение продукции
- Генерация продукции
 - начиная с цифрового базового прогноза, большинство продукции генерируется автоматически или полуавтоматически в разных форматах (текст, таблицы, графики, т.д.)
 - ограничена возможность для прогнозистов вносить ошибки в конечную продукцию
 - больше возможностей для адаптации продукции к потребностям пользователей
- Новые приложения для авиационных предупреждений и прогнозов: разработаны приложения в помощь синоптикам для подготовки предупреждений и прогнозов ТАF
 - Система SIGA для автоматической генерации предупреждений (text bulletins, XML files, etc.)
 - Система SIGTAF для подготовки TAF с коррекцией механических ошибок
- HIRLAM (5 km) HARMONIE (2.5 km)



МЕЖДУНАРОДНЫЙ ОПЫТ: США ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

ИСПОЛЬЗОВАНИЕ MOS ДЛЯ ТАГ КОНСУЛЬТАЦИИ - ПИЛОТАМ



МЕЖДУНАРОДНЫЙ ОПЫТ: ФРАНЦИЯ ПРОДУКЦИЯ ДЛЯ СИНОПТИКОВ

SYNERGIE-WEB

- Рабочие станции, полностью основанные на веб-технологии, разработанные совместно с МетеоФранс
- Является лучшим инструментом НГМС для принятия решений и прогнозирования благодаря возможности интеграции и обработки данных
- Отображение всех данных наблюдений в кодах ВМО
- Визуализация данных ИСЗ, радаров, моделей
- Анализ и графическое построение
- Выпуск ОРМЕТ, форматно-логический контроль

MET/14 UKAO / KAM-XV BMO

Специализированное совещание по метеорологии (MET/14) ИКАО XV сессия Комиссии по авиационной метеорологии (KAM-XV) ВМО

- Итоги развития науки и технологий
- Глобальный аэронавигационный план (ГАНП) ИКАО (doc. 9750) стратегия совершенствования воздушного транспорта в период 2013 2028 г

Блоки (сроки реализации) связанных с МЕТ модулей AMET ASBU:

- AMET в блоке B0 (2013-2018)
- AMET в блоке B1 (2018-2023)
- AMET в блоке B2 (2023-2028)
- АМЕТ в блоке ВЗ (2028 и последующие годы)

BO-AMET (2013-2018)

Рекомендация 2/4 Пересмотреть рамки предоставления метеорологической информации, установленные в Приложении 3, с учетом возникающих потребностей пользователей в отношении будущего развития

- Всемирной системы зональных прогнозов (ВСЗП)
- Службы слежения за вулканической деятельностью на международных авиатрассах (IAVW)
- Информации о космической погоде
- Информации о радиоактивных выбросах в атмосферу
- Разработки и внедрения региональной консультативной системы по отдельным опасным метеорологическим условиям на маршруте в районах с недостаточно развитым обслуживанием SIGMET

2

Модуль **B0-AMET** (2013-2018) Модуль **B1-AMET** (2018-2023)

Рекомендация 2/7. Дальнейшая разработка положений, касающихся информации о космической погоде разработка положений, касающихся обеспечения международной аэронавигации информацией о космической погоде в соответствии с *Глобальным аэронавигационным планом* (Doc 9750)

Рекомендация 2/8. Дальнейшая разработка положений, касающихся информации о выбросах радиоактивных материалов в атмосферу

разработка положений в отношении информации о выбросах радиоактивных материалов в атмосферу в соответствии с эволюцией Глобального аэронавигационного плана (Doc 9750)

Рекомендация 2/9. Внедрение региональной консультативной системы по отдельным опасным метеорологическим условиям на маршруте

разработка положений, поддерживающих внедрение ориентированной на явления региональной консультативной системы по отдельным опасным метеорологическим условиям на маршруте, в соответствии с эволюцией Глобального аэронавигационного плана (Doc 9750)

Рекомендация 2/10. Разработка метеорологического обслуживания для района аэродрома

разработка положений об ориентированном на ОрВД метеорологическом обслуживании для района аэродрома в целях удовлетворения будущих потребностей ОрВД (УВД и ОВД), указанных в Глобальном аэронавигационном плане (Doc 9750)

СТРУКТУРА ГЛОБАЛЬНОГО И РЕГИОНАЛЬНОГО ОБЕСПЕЧЕНИЯ В РАМКАХ ИКАО

Всемирные центры

зональных прогнозов (WAFC) Лондон, Вашингтон

Глобальные и Региональные

2018

центры космической погоды

(SpWXC) Создаваемые, одобрен Росавиацией

Консультативные центры по

2018*-

опасным явлениям погоды

согласование SIGMET

(RHWAC) Создаваемые, одобрен Росавиацией

Консультативные центры

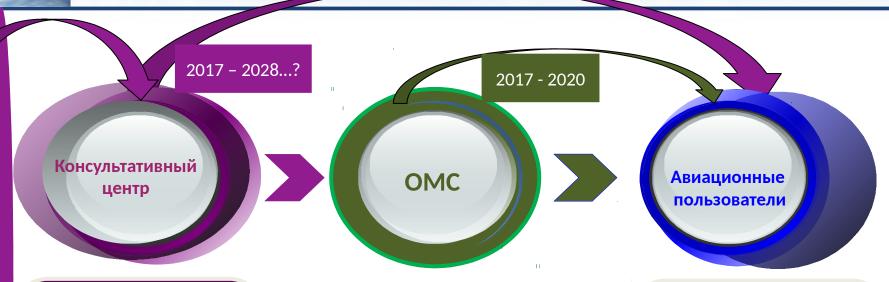
по выбросам радиоактивных

материалов в атмосферу Создаваемые

Консультативные центры

по вулканическому пеплу (9 VAAC)

Консультативные центры


по тропическим циклонам (7 TCAC) ФГБУ «ИПГ»

- Москва
- Новосибирск
- Хабаровск
- ФГБУ «НПО Тайфун»

BO-AMET (2013-2018)

ГЛОБАЛЬНЫЕ И РЕГИОНАЛЬНЫЕ ЦЕНТРЫ ИКАО

Выпуск консультативных сообщений в буквенноцифровом, графическом, цифровом виде (XML/GML)

Выпуск SIGMET

- **▼** WS + RDOACT CLD
- WV
- WC

Использование АМИ в буквенно-цифровом, графическом, цифровом виде (XML/GML)

ГЛОБАЛЬНЫЕ И РЕГИОНАЛЬНЫЕ ЦЕНТРЫ ИКАО

- Получение и усвоение всех данных наблюдений, моделирование
- Выпуск консультативной продукции на основе численных моделей
- Анализ и верификация продукции
 - Разработка СПО для формирования консультативных сообщений в форматах ИКАО (буквенно-цифровой, графический формат, XML/GML)
 - Разработка веб-ресурса для размещения продукции
 - ✓ Набор, обучение и стажировка персонала
 - ✓ CMK
 - ✓ Взаимодействие в зоне ответственности (возможно, с другими государствами), со смежными центрами и пользователями

Исследования, разработки, участие в международной деятельности Вероятностные прогнозы, наукастинг

ПРИЛОЖЕНИЕ 3 К КОНВЕНЦИИ О МЕЖДУНАРОДНОЙ ГРАЖДАНСКОЙ АВИАЦИИ

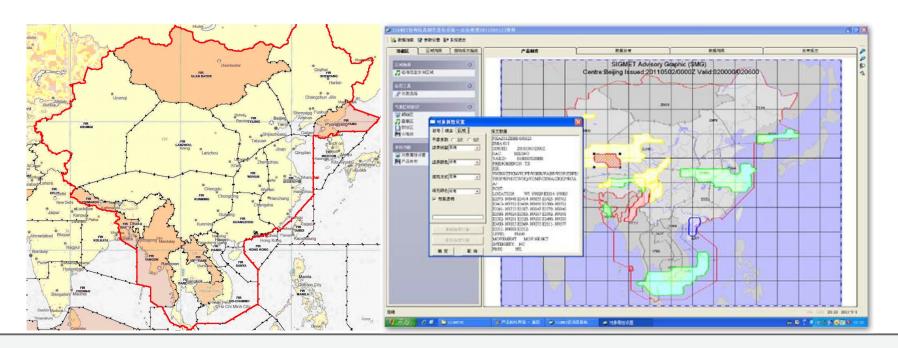
Гроза (TS)	гроза(ы) в облачности	EMBD TS
частые гроза(ы)		FRQ TS
	скрытая гроза(ы)	OBSC TS
	гроза(ы) по линии шквала	SQL TS
	гроза(ы) в облачности с градом	EMBD TSGR
	частые гроза(ы) с градом	
	скрытая гроза(ы) с градом	OBSC TSGR
	гроза(ы) по линии шквала с градом	SQL TSGR
Турбулентность (TURB)	сильная турбулентность	SEV TURB
Обледенение (ICE)	сильное обледенение	SEV ICE
	сильное обледенение вследствие замерзающего дождя	SEV ICE (FZRA)
Горная волна (MTW)	сильная горная волна	SEV MTW
Пыльная буря (DS)	сильная пыльная буря	HVY DS
Песчаная буря (SS)	сильная песчаная буря	HVY SS

Информация SIGMET - выпускаемая метеорологического органом (OMC) информация слежения фактическом или ожидаемом возникновении определенных явлений погоды по маршруту полета и других явлений атмосфере, которые могут повлиять на безопасность П

Международные стандарты и Рекомендуемая практика

Настоящое издание заменяют, с 10 ноября 2016 года, все предъдущие издания Приложения 3. Сведения о применании Стандартов и Рекомендуемой практики

МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ГРАЖДАНСКОЙ АВИАЦИИ


14.4.1/ Page 26

КОНСУЛЬТАТИВНЫЙ ЦЕНТР ПО ОПАСНЫМ ЯВЛЕНИЯМ ПОГОДЫ – ПРОЕКТ ВМО-2011

Эксперимент 2011 по предоставлению консультативной информации для SIGMET в Африканском регионе (AFI) и части Азиатско/Тихоокеанского региона (APAC) при участии Китая, Франции и Южной Африки в качестве Консультативных центров по SIGMET (по опасным явлениям погоды).

На период эксперимента в зону ответственности Китая входили 19 FIRs 10-ти государств: Bangladesh, Cambodia, Mainland China, Democratic People's Republic of Korea, Lao People's Democratic Republic, Mongolia, Myanmar, Nepal, Thailand and Vietnam (18 MWOs)

Консультативный центр по опасным явлениям погоды (RHWAC, Китай)

FXAS31 ZBBB 181150

SMA 023DTG: 2011051

SAC: ASIA

VALID: 181200/181800

FIR: ZMUB/ZLHW/ZWU

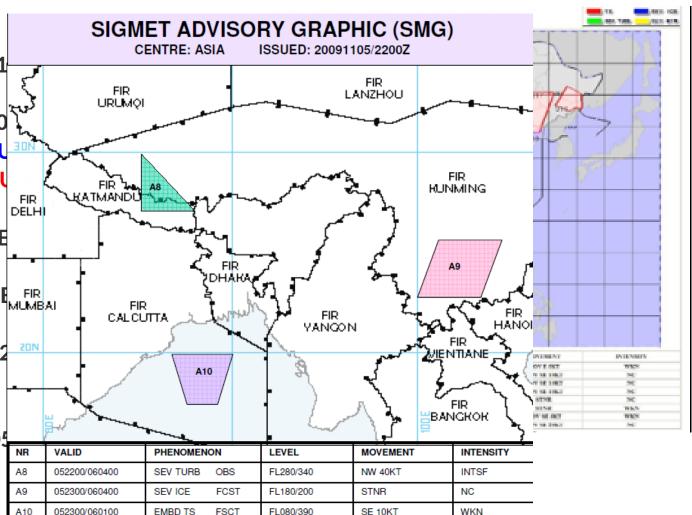
PHENOMENON: SEV TU

FCST

LOCATION: WI N4449 E

E11443-

N3719 E11332-N4244 E


LEVEL: FL240/FL330

MOVEMENT: MOV SE 2

INTENSITY: NC

RMK: NIL

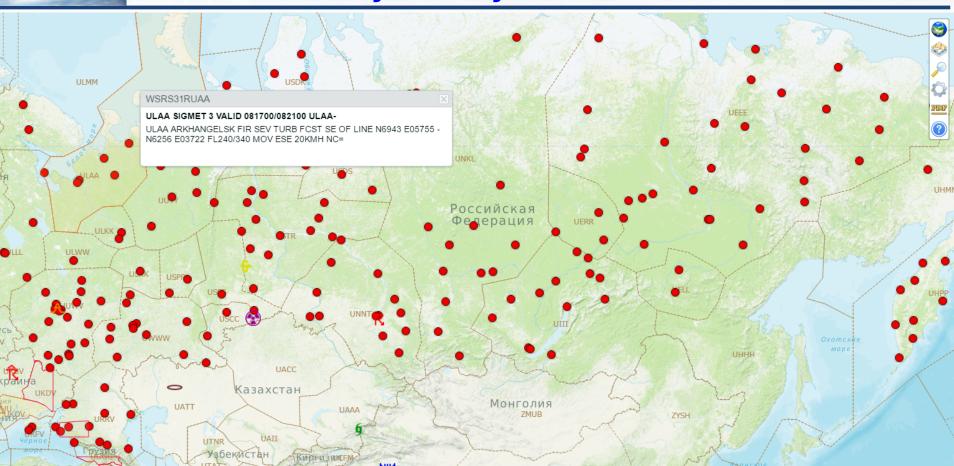
NXT ADVISORY: 201105

Консультативный центр по опасным явлениям погоды (RHWAC, Китай)

- КС для SIGMET основаны на продукции NWP, ИСЗ, радарных данных, сообщениях с борта ВС (AIREP, AMDAR), SYNOP, Р/З, профайлеры, МЕТАR/SPECI, ВЦЗПІ 2011:
- China Aviation Numerical Forecast Systems (CANFS)
- Горизонтальное разрешение 36 km, цикл обновления 3 ч, на 72 ч
- 3она 600N, 600E до 200S, 1500E
- Внедрена в Beijing, Shanghai и Guangzhou

MET/14 UKAO / KAM-XV BMO

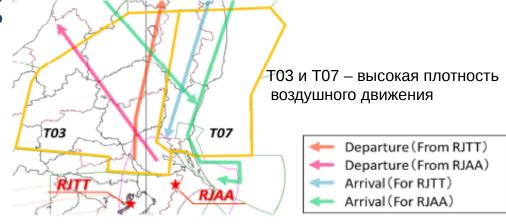
 Документ Международной федерации ассоциаций линейных пилотов (IFALPA — International Federation of Airline Pilot Associations) и ассоциации пилотов Европейских авиакомпаний, представляющий позицию пилотов по некоторым элементам метеорологического обеспечения



Метеорологическая информация

- доступна, легко интерпретируема
- представлялась в графическом формате на протяжении всех фаз полета, от планирования до посадки
- предоставлялась в географических координатах независимо от границ на протяжении всего маршрута
- организовать путем кооперации метеорологических служб в Европе MET-Портал, аналогичный Порталу США http://www.aviationweather.gov. Меню должно быть простым и наглядным в использовании

ПРОЕКТ WebGIS ДЛЯ КООРДИНАЦИИ SIGMET


- Формирование, выпуск и отображение сообщений SIGMET, AIREP, METAR/SPECI. TAF
- Не требует установки специализированного клиентского программного обеспечения для пользователя ресурса

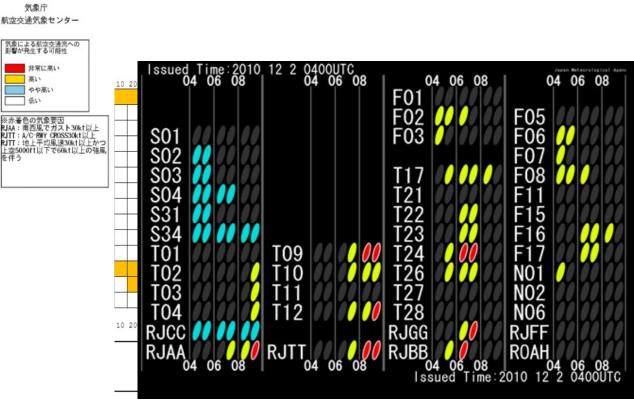
НОВОЕ ОБЕСПЕЧЕНИЕ В1-АМЕТ: ПРОДУКЦИЯ ДЛЯ ОРВД (ТОКИО, ЯПОНИЯ)

Стандартные маршруты прибытия и вылета для аэродромов Haneda Tokyo (RJTT) и Narita Tokyo (RJAA)

Укрупненный центр ОВД Токио (Tokorozawa TMU), в который входят м/н аэродромы Токио Haneda и Narita и смежные зоны (свыше 1100 взлетов-посадок/сутки) ОВД пропускной рассчитывают показатель

Метеорологи ТМАТ предоставляют МЕТ информацию условиях, которые могут снизить пропускную способность на а/д Токио

НОВОЕ ОБЕСПЕЧЕНИЕ В1-АМЕТ: ПРОДУКЦИЯ ДЛЯ ОРВД (ТОКИО, ЯПОНИЯ)


ATMet - КАТЕГОРИАЛЬНЫЙ ПРОГНОЗ ДЛЯ ОВД (JMA)

• Метеорологическая информация должна быть основана на оперативно важных пороговых критериях, которые относятся к пропускной способности аэродрома и зон ОВД (подходов, заходов на посадку и снижения)

очень высокое	≥ 50 %
высокое	≥ 25 %, но <50 %
повышенное	≥ 15 %, но <25 %
низкое	<15 %

• Цветовой код определяется степенью влияния погоды на УВД в районе

ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ АВИАЦИОННОЙ МЕТЕОРОЛОГИИ (2020-2035)

- Автоматизация процессов прогнозирования
- ▶ Развитие и применение современных технологий для подготовки, распространения и предоставления АМИ
- Функционирование глобального, регионального и локального обеспечения
- Постоянное совершенствование и применение численных моделей атмосферы.
- ▶ Развитие систем наукастинга на основе систем мезомасштабного численного прогноза погоды с учащенным циклом обновления и усвоением данных различных наблюдений (радарных, АМС, профилемеров, ИСЗ и т.д.)
- ▶ Разработка и применение новых моделей обмена цифровыми данными (XML)
 - О 2020: ИСКЛЮЧЕНИЕ КРИТЕРИЕВ ДЛЯ ВЫПУСКА SIGMET ДЛЯ ОДНОГО FIR
 - Концепции ИКАО до **2035**: *рекомендации* по централизации прогнозирования (оптимизации) до нескольких аэродромных прогностических центров (или передача функций от одного государства другому)
 - AFC (Aerodrome Forecast Centres): расширение зоны ответственности от 16 км до ТМА (зоны ОВД до нескольких а/д)
 - Гармонизация данных АFC для ТМА смежных государств
 - O Гармонизация данных AFC с глобальными данными GFS (Global Forecast System)

АВИАЦИОННАЯ МЕТЕОРОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ – БУДУЩЕЕ (2035)

- Различие между обеспечением 2016 и 2035 заключается в том, что все функции объединяются в унифицированную глобальную систему для предоставления информации напрямую конечному пользователю
- Изменение концепции обеспечения требования ИКАО: обеспечение, основанное на явлении, т.е. «служба явлений погоды без границ»
 - ✓ 4-D представление данных
 - ✓ Требования к качеству информации в части сообщения о явлениях
 - ✓ Требования к возможностям, включая состояние науки
 - ✓ Удовлетворительные механизмы для управления и возмещения затрат
 - ✓ Предоставление «региональных» консультативных сообщений переходный период к глобальному обеспечению

МОСКВА. НОВОСИБИРСК, ХАБАРОВСК

ЗАДАЧИ АВИАЦИОННОГО МЕТЕОРОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ В РОССИИ

Создание Консультативных центров по опасным явлениям погоды (явления SIGMET:

TS, SEV ICE, SEV TURB, SEV MTW, SS

Центры прогнозирования явлений/

условий погоды, значимых для авиации для регионального и локального обеспечения Объединение научного потенциала Москва-Новосибирск-Хабаровск:

- ✓ моделирование и предоставление данных (COSMO-ICON, WRF-ARW? ...)
- совершенствование алгоритмов и гармонизация ЧПП
- ✓ рекомендации синоптикам по прогнозированию опасных для авиации явлений/условий погоды
- ✓ Выпуск консультативной информации в коде GRIB, в виде полей, таблиц, метеограмм
- Автоматизация процессов авиационного прогнозирования
 - ✓ Выпуск автоматически подготовленной продукции AUTO TAF, AUTO TREND
 - Максимально возможное использование СПО (исключение ошибок)
- Объединение потенциала специалистов ИТ по разработке СПО и внедрению современных технологий для подготовки, распространения и предоставления данных для метеорологов и авиационных пользователей
- Создание новой продукции для УВД в зоне аэродрома до 200 км (СВ, ветер, видимость, ICE, TURB, др.) на основе данных ЧПП (GRIB)

МОСКВА. НОВОСИБИРСК, ХАБАРОВСК

СПАСИБО!

